Preferred Language
Articles
/
Nxbp4osBVTCNdQwCl-N8
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vectors to determine the sub-class of each attack type are selected. Features are evaluated to measure its discrimination ability among classes. K-Means clustering algorithm is then used to cluster each class into two clusters. SFFS and ANN are used in hierarchical basis to select the relevant features and classify the query behavior to proper intrusion type. Experimental evaluation on NSL-KDD, a filtered version of the original KDD99 has shown that the proposed IDS can achieve good performance in terms of intrusions detection and recognition.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Aug 27 2025
Journal Name
Baghdad Science Journal
A Clustering Technique Based on the Hard K-Means (H.KM.) Method to Determine the Governorate That Have More Influence for Spreading COVID-19 in the Kingdom of Saudi Arabia
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Brain Tumour Detection using Fine-Tuning Mechanism for Magnetic Resonance Imaging
...Show More Authors

In this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Automatic human ear detection approach using modified adaptive search window technique
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 23 2025
Journal Name
Journal Of Plant Protection Research
Smart sprayer for weed control using an object detection algorithm (yolov5)
...Show More Authors

Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...

View Publication
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 International Conference On Electrical Engineering And Computer Science (icecos)
An Evolutionary Algorithm for Community Detection Using an Improved Mutation Operator
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
View Publication Preview PDF
Scopus (43)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Design and Implementation for optical fiber communication system using frequency shift coding
...Show More Authors

In this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Jan 20 2025
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Assessing Landsat Processing Levels and Support Vector Machine Classification
...Show More Authors

The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conv

... Show More
View Publication
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Damage Detection and Assessment of Stiffness and Mass Matrices in Curved Simply Supported Beam Using Genetic Algorithm
...Show More Authors

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i

... Show More
View Publication Preview PDF
Crossref