With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vectors to determine the sub-class of each attack type are selected. Features are evaluated to measure its discrimination ability among classes. K-Means clustering algorithm is then used to cluster each class into two clusters. SFFS and ANN are used in hierarchical basis to select the relevant features and classify the query behavior to proper intrusion type. Experimental evaluation on NSL-KDD, a filtered version of the original KDD99 has shown that the proposed IDS can achieve good performance in terms of intrusions detection and recognition.
Four new binuclear Schiff base metal complexes [(MCl2)2L] {M = Fe 1, Co 2, Cu 3, Sn 4, L = N,N’-1,4-Phenylenebis (methanylylidene) bis (ethane-1,2-diamine)} have been synthesized using direct reaction between proligand (L) and the corresponding metal chloride (FeCl2, CoCl2, CuCl2 and SnCl2). The structures of the complexes have been conclusively determined by a set of spectroscopic techniques (FT-IR, 1H-NMR, and mass spectra). Finally, the biological properties of the complexes have been investigated with a comparative approach against different species of bacteria (E. coli G-, Pseudomonas G-, Bacillus G+,
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Breast cancer is the most prevalent malignancy among women worldwide, in Iraq it ranks the first among the population and the leading cause of cancer related female mortality. This study is designed to investigate the correlations between serum and tissue markers in order to clarify their role in progression or regression breast cancer. Tumor Markers are groups of substances, mainly proteins, produced from cancer cell or from other cells in the body in response to tumor. The study was carried out from April 2018 to April 2019 with total number of 60 breast cancer women. The blood samples were collected from breast cancer women in postoperative and pretherapeutic who attended teaching oncology hospital of the medical city in Baghdad and
... Show MoreThe hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treat
In this study miconazole nitrate was formulated as topically applied emulgel; different formulas were prepared using sodium carboxymethylcellulose (SCMC) and carboxypolymethylene (carbomer 941) as gelling agents. The influence of type of gelling agent and concentration of both oil phase and emulsifying agent on drug release was studied and compared with commercially available miconazole nitrate cream (Mecozalen®). The results of in vitro release showed that SCMC emulgel bases gave better release than carbomer 941 bases and the release of drug increase from both bases as a function of increasing the concentration of emulisifying agent. The oil phase had retardation effect when
... Show MoreBackground: Osteogenesis imperfecta (OI) is a rare congenital condition that results in bone fragility, recurrent fractures, and various extra-skeletal manifestations. Currently, intravenous bisphosphonate is the mainstay of medical treatment in OI. Objective: To identify the effect of current management strategies on Iraqi children diagnosed with OI. Methods: A retrospective study enrolled OI patients who were registered in Central Child Teaching Hospital, Baghdad, Iraq, from January 2015 to December 2022. We enrolled confirmed OI cases (either clinically and/or radiologically) who received cyclic pamidronate therapy for at least 3 cycles. They neither received other types of bisphosphonates nor underwent surgical intervention. Res
... Show MoreSoil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.