With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vectors to determine the sub-class of each attack type are selected. Features are evaluated to measure its discrimination ability among classes. K-Means clustering algorithm is then used to cluster each class into two clusters. SFFS and ANN are used in hierarchical basis to select the relevant features and classify the query behavior to proper intrusion type. Experimental evaluation on NSL-KDD, a filtered version of the original KDD99 has shown that the proposed IDS can achieve good performance in terms of intrusions detection and recognition.
Copper doped Zinc oxide and (n-ZnO / p-Si and n-ZnO: Cu / p-Si) thin films thru thickness (400±20) nm were deposited by thermal evaporation technique onto two substrates. The influence of different Cu percentages (1%,3% and 5%) on ZnO thin film besides hetero junction (ZnO / Si) characteristics were investigated, with X-ray diffractions examination supports ZnO films were poly crystal then hexagonal structural per crystallite size increase from (22.34 to 28.09) nm with increasing Cu ratio. The optical properties display exceptional optically absorptive for 5% Cu dopant with reduced for optically gaps since 3.1 toward 2.7 eV. Hall Effect measurements presented with all films prepared pure and doped have n-types conductive, with a ma
... Show MoreThe analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.
Because the studying of time series can get by building, analysis the models and then forecasting gives the priority for the practicing in different fields, therefore the identification and selection of the model is of great importance in spite of its difficulties.
The selection of a standard methods has the ability for estimation the errors in the estimated the parameters for the model, and there will be a balance between the suitability and the simplicity of the model.
In the analysis of d
... Show MoreDAIRMD Professor Hayder R. Al-Hamamy, **Professor Adil A. Noaimi, **Dr. Ihsan A. Al-Turfy, IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2015
HR Al-Hamamy, AA Noaimi, IA Al-Turfy, AI Rajab, Journal of Cosmetics, Dermatological Sciences and Applications, 2015
The research aimed mainly to discover the effectiveness of the (PEOE) model in teaching science to develop the skills of generating and evaluating information and the emotional side of the scientific sense of the intermediate first grade students. An experimental approach with a quasi-experimental design called pre-test and post-test control design was used. The research sample consisted of (60) students, who were selected in a random cluster method, (30) students in the experimental group studied the unit "The Nature of Material" using the (PEOE) model, and (30) students in the control group studied according to the prevailing method of teaching. The research materials and tools were represented in: a teacher's guide for teaching the un
... Show More