Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreA nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show MoreInfection with the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. Infection with Toxoplasma may associate with miscarriage in many pregnant women due to infection. In this study, the level of lutetropic hormone (LTH), folliclestimulating hormone (FSH) and luteinizing hormone (LH) was measured in pregnant women suffering from toxoplasmosis using mini-VIDAS®technique. Results showed that pregnant women have high concentration of both LTH and FSH hormone(10.80 ± 6.53) ng/ml and (9.51 ± 2.40) μIU/ml respectively, while the concentration of LH hormone was lower than normal(4.49 ± 0.56) μIU/ml. Such finding is to suggest that infection with T. gondii is interfering with these hormones in pregnant women.
Background: The diagnosis of prostatic pathology may be of challenging , as some difficult and suspected, atypical cases may lack basal cell layer by routine H&E sections . Antibodies against 34BE12(HMW-CK) and p63 aid the diagnosis of such cases , to distinguish benign from malignant prostatic lesions.
Objective: to identify basal cells in atypical prostatic lesions ,and distinguish benign from malignant prostatic lesions.
Type of the study: A retro-spective study.
Methods: 115cases of paraffin embedded prostatic tissue blocks ,diagnosed as : 76 cases were benign prostatic hy
... Show MoreTo investigate the role of IL-6 and IL-8 in the immune-regulatory mechanisms involved in the recurrent spontaneous abortion of the first trimester of pregnancy. Serum level of IL-6 and IL-8 were determined in 25 women of age (20-35) years who had a spontaneous abortion of unknown aetiology during the first trimester of pregnancy .They were compared with the corresponding levels of 20 pregnant and non-pregnant women as control groups .cytokine levels were measured by (ELISA) technique .The women with spontaneous abortion had highly significant (P < 0.01) increased serum level of IL-8 and highly significant (P < 0.01 ) decreased level of IL-6 compared to those with normal pregnant and non-pregnant women. The results of this study ma
... Show MoreBACKGROUND: HLA-B27 can effect clinical presentation and course of ankylosing spondylitis. Different detection techniques of HLA-B27 are available with variable sensitivities and specificities. OBJECTIVE: To compare serologic and molecular diagnostic techniques of detecting HLA-B27 status and to correlate it with some clinical variables among ankylosing spondylitis patients. PATIENTS AND METHODS: A cross-sectional study was conducted on 83 Iraqi patients with ankylosing spondylitis. Clinical and laboratory evaluations were reported. HLA-B27 status was determined in all patients by real-time PCR using HLA-B27 RealFast™ kit; ELISA method was used as well to detect soluble serum HLA-B27 antigens using Human Leukocyte Antigen® kit. RESULTS:
... Show More