Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
In this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreAAA AL-NUAIMY, MH ABDLL-ABASS, Iraqi Journal of Agricultural Sciences, 2007
Education is a process of learning and education at the same time. As the conditions of modern life necessitate every person to keep learning, education has become a necessity to meet life needs. The society today is concerned with the educational process and aims to live up the expectations. Since education is an integral part of education and its means, it has become as a mean to achieve its purposes. The educational environment was a traditional environment limited to specific inputs, possibilities and stimulus of both teacher and student. Due to the latest advancement, the educational environment has been expanded to become a rich, with strong connections. It has expanded to encompass the entire global environment. The current
... Show MoreMarket share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
The antiviral activity of leaf extracts from Datura stramonium and tomato plants inoculated with TMV, combined with 20% skimmed milk, was investigated. A TMV isolate was confirmed using bioassay, serological, and molecular approaches and subsequently used to inoculate plants. Tomato plants, both pre- and post-inoculated with TMV, were sprayed with leaf extracts from either TMV-free or infected plants, alone or mixed with 20% skimmed milk. Enzyme-linked immunosorbent assay (ELISA) using tobamovirus-specific antibodies and local lesion tests were conducted to assess antiviral activity based on virus concentration and infectivity in treated plants. The experiment followed a completely randomized design (CRD), and the Least Significant
... Show MoreThis paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi
... Show More