Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
The purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThe kaizen is considered as one of the most important modern techniques which has been adopted by various economics entities especially manufacturing firms and its beginnings return to the middle of the earlier century that has been used by companies like Toshiba, Matsushita Electric, and Toyota. Which realized that these modern techniques would make a total change in the competitive environment and started qualifying and its staff in such away that enables them to go along with this unique environment. The continuous improvement (Kaizen) depends on the small continuous improvements in the product and the production operations during the production stage. Consequently, the research problem is represented in the improperly of the budg
... Show MoreThe research intent evaluates the performance of material technical department / Technical College -Baghdad.
The study depend on the descriptive analytical approach to determine and treating the variables to get data and information that related to study, the researchers depended on questionnaire designed for this purpose and contains eight main dimensions that’s are scientific reference , academy course, staff member , administrative system, physical facilities , student ,scientific research, graduate service , in addition each dimension involved (5) items contacted with mean dimensions, which translate aspects of performance evaluation, the questionnaire applied on two samples staff member
... Show MoreContemporary management is interested in the process of performance assessment because of its significance in the field of planning and controlling the multiactiveties to attain its goals and uncovering digression of virtual performance after comparing it with the plan or equitable performance.
Digression is analyzed to enable management control centers of authority.
Assessment process significance is closely related by setting definite categories to evaluate the economic activity to know the ability to achieves aims.
This study concentrated on the most important categories that used to evaluate company understudy with ather categories suggested to complete assessment process.
This study is in
... Show MoreActive Learning And Creative Thinking
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show More