Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
Sewer system plays an indispensable task in urban cities by protecting public health and the environment. The operation, maintenance, and rehabilitation of this network have to be in a sustainable and scientific manner. For this purpose, it is important to support operators, decision makers and municipalities with performance evaluation procedure that is based on operational factors. In this paper, serviceability and performance indicator (PI) principles are employed to propose methodology comprising two enhanced PI curves that can be used to evaluate the individual sewers depending on operational factors such as flowing velocity and wastewater level in the sewers. In order to test this methodology; a case study of al-Ru
... Show MoreThe study aimed to reveal the level of knowledge and tendencies of high- study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with brain-based learning (BBL). And Then, putting a proposed concept to develop knowledge and tendencies of high-study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with Brain-based learning (BBL). For achieving this goal, a cognitive test and a scale of tendency were prepared to apply harmonious strategies with brain-based learning. The descriptive approach was used because it suits the goals of the study. The study sample consisted of (70) male and female students of postgraduate
... Show MoreThe paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreConsidering the expanding frequency of breast cancer and high incidence of vitamin D3 [25(OH)D3] insufficiently, this investigate pointed to explain a relation between serum [25(OH)D3] (the sunshine vitamin) level and breast cancer hazard. The current study aimed to see how serum levels of each [25(OH)D3], HbA1c%, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were affected a woman’s risk of getting breast cancer. In 40 healthy volunteers and 69 untreated breast cancer patients with clinical and histological evidence which include outpatients and hospitalized admissions patients at the Oncology Center, Medical City / Baghdad - Iraq. Venous blood samp
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.