Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreThe performance evaluation process requires a set of criteria and for the purpose of measuring the level of performance achieved by the Unit and the actual level of development of its activities, and in view of the changes and of rapid and continuous variables surrounding the Performance is a reflection of the unit's ability to achieve its objectives, as these units are designed to achieve the objectives of exploiting a range of economic resources available to it, and the performance evaluation process is a form of censorship, focusing on the analysis of the results obtained from the achievement All its activities with a view to determining the extent to which the Unit has achieved its objectives using the resources available to it and h
... Show MoreAs a consequence of a terrorist attack, people may experience posttraumatic stress disorder (PTSD) and lack of feeling secure in relationships. This longitudinal study aimed to examine the prevalence of PTSD symptoms over time, the relationship between adult attachment styles and PTSD, as well as their association with degree of exposure, and finally to consider the distribution and the trajectory of attachment styles. The sample consisted of 235 students (M=125, F=110) who were exposed to different levels of trauma intensity in response to a bombing attack. Participants were recruited and assessed approximately 1 month and 5 months after the attack using a battery of questionnaires. Findings revealed, as expected, that 79.5% of the part
... Show MoreThe present study aims at empirically investigating the effect of vocabulary learning strategies on Iraqi intermediate school students’vocabulary performance and reading comprehension. The population of the present study includes all the 1st year male students of Al-Wark’a intermediate school of Al-Risafa 1/ General Directorate of Education for the first course of the academic year (2015-2016). To achieve the aim of the study ,a pre-test and post-test after (5) weeks of experiment are administrated .The sample of the present study consists of (100) subjects :(50) students as an experimental group and other (50) students as a control group . The subj
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreBackground: The base of the denture is largely responsible for providing the prosthesis with retention, stability, and support by being closely adapted to the oral mucosa. However; the process of bone resorption is irreversible and may lead to an inadequate fit of the prosthesis; this can be overcome by relining. Materials and methods: Acrylic based soft denture liner is prepared by preparing polymer from purified methylmethacrylate monomer with (10-2) initiator and (30%) dibutylphthalate plasticizer concentrations. Biological properties were evaluated in comparison with the control material through subcutaneous specimens' implantation in the New Zealand rabbits. Excisional biopsies were taken after (1, 3, days 1, 2, 3, 4 weeks) period. Mic
... Show MoreResearchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show MoreThis study was carried out in Artificial Insemination Center of Iraq to revealed FMD disease effect on some seminal attributer parameters of 14 imported Holstein bulls divided to three groups according to different reproductive efficiency (four High, five medium and five weak). Results showed that FMD disease had significant (P < 0.05) adverse effect on most seminal attributer parameters, mass, individual motility and sperm concentration / ml during post disease in first of two, four, all months of high, medium and weak semen quality bulls respectively .but semen volume didn’t influenced significantly with this disease. So semen collection should be suspended until resume normal fertility of sperm, after two, four month of high and
... Show More