Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
Ankylosing spondylitis is a complex debilitating disease because its pathogenesis is not clear. This study aims at detecting some pathogenesis factors that lead to induce the disease. Chlamydia pneumoniae is one of these pathogenesis factors which acts as a triggering factor for the disease. The study groups included forty Iraqi Ankylosing spondylitis patients and forty healthy persons as a control group. Immunological and molecular examinations were done to detect Chlamydia. pneumoniae in AS group. The immunological results were performed by Enzyme-Linked Immunosorbent Assay (ELISA) to detect anti-IgG and anti-IgM antibodies of C. pneumoniae revealed that five of forty AS patients' samples (12.5%) were positive for anti-IgG and IgM C. pneu
... Show MoreBackground: The main purpose of this study is to find if there is any correlation between the level of C-reactive protein (CRP) in gingival crevicular fluid with its serum level in chronic periodontitis patients and to explore the differences between them according to the probing depth. Materials and methods: Forty seven male subjects enrolled in this study. Thirty males with chronic periodontitis considered as study group whom further subdivided according to probing depth into subgroup 1 with pocket depth ≤6mm, subgroup 2 with pocket depth >6mm. The other 17 subjects considered as controls. For all subjects, clinical examination where done for periodontal parameters plaque index (PLI), gingival index (GI), bleeding on probing (BOP),
... Show MoreAnalysis system of sports players is very important for individuals in weightlifting. Assessment of player and strength is important for the performance of weightlifting. This paper proposes an analytical method for weightlifters with check-by-frame video. This analysis system can compute the major steps of seven positions in both snatch and clean and jerk methods in frame-video weightlifting monitoring of movements. Each user can compute the major steps of the seven positions of Hu moments among two frames in the video during training, and the Euclidian distance can be computed for the Hu moment values and lifting moment values in the snatch and clean and jerk methods during training. The outcome of the proposed system shows on efficien
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreThe physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show MoreNowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show More