Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreImage pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show MoreImage pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The
... Show MoreAjloun reserve is the most important reserved areas set up by the Jordanian government to encourage development and ecotourism, is located on the green mountains of Ajloun north of Jordan, was founded in 1989 and follow The Royal Society for the conservation of the natur, an area of 13 km2, and covered with thick forests of oak trees and Butm, maple and others, characterized by the diversity of vital consists of 319 species of medicinal and aromatic plants and wild flowers, and where there are 40 species of birds, 14 species of mammals, 16 reptiles, 5 species of plants registered in the world. The Reserve has a great importance in Jordan ,it is the most reservations attractive to tourists, both internally and externally, and prov
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show More