Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
Background: The present study involved the following parts, the first part is evaluation of the levels of glycated hemoglobin(HbA1c), creatinine, uric acid(UA) and albumin in patients with diabetic nephropathy comparison with the group of healthy as a control group. The second part is the measurement and evaluation of oxidative stress represented in the malondihydehyde(MDA) as a biomarker of oxidative stress as well as the identification of vitamins C and E as an antioxidant in patients with diabetic nephropathy(DN) compared with the healthy group. Objective: The objective of this study is to estimate oxidative stress by calculate malondialdehyd as biomarker and evaluate some vitamins such as vit C and vit E as antioxidants in diabetic neph
... Show MoreThe Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Synthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
The normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t
... Show MoreBackground: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth exc
... Show MoreType-1 diabetes is defined as destruction of pancreatic beta cell, virus and bacteria are some environmental factor for this disease. The study included 25 patients with type-1 diabetes mellitus aged between 8 – 25 years from Baghdad hospital and 20 healthy persons as control group. Anti-rubella IgG and IgM, anti-Chlamydia pneumonia IgG and IgM were measured by ELISA technique while anti-CMV antibody were measured by immunofluorescence technique. The aim of current study was to know the trigger factor for type-1 diabetes. There were significant differences (P<0.05) between studied groups according to parameters and the results lead to suggest that Chlamydia pneumonia, CMV and rubella virus may trigger type-1 diabetes mellitus in Iraqi pat
... Show More