The utilization of sugarcane molasses (SCM), a byproduct of sugar refining, offers a promising bio-based alternative to conventional chemical admixtures in cementitious systems. This study investigates the effects of SCM at five dosage levels, 0.25%, 0.50%, 0.75%, 1.00%, and 1.25% by weight of cement, on cement mortar performance across fresh, mechanical, thermal, durability, and density criteria. A comprehensive experimental methodology was employed, including flow table testing, compressive strength (7, 14, and 28 days) and flexural strength measurements, embedded thermal sensors for real-time hydration monitoring, water absorption and chloride ion penetration tests, as well as 28-day density determination. Results revealed clear dose-dependent behavior, with SCM enhancing mortar flowability proportional to dosage, raising the spread diameter from 11.5 cm (control) to 20 cm at 1.25%. At 0.25% SCM, compressive strength (47.5 MPa at 28 days) and flexural strength (~2.9 MPa) were higher than those of the remaining SCM dosages, supported by sustained heat release and positive temperature differentials. However, dosages ≥ 0.5% drastically suppressed hydration kinetics and mechanical performance, with compressive strength falling below 10 MPa. Furthermore, high SCM content led to increased water absorption (up to 10.6%) and chloride permeability (CIP above 5100 C), while bulk density declined from 2250 kg/m3 to 2080 kg/m3 at 1.25% SCM. Statistical validation using one-way ANOVA confirmed that these differences across dosage levels were significant (p < 0.05), underscoring the importance of dosage optimization. This investigation confirms that low-dosage SCM (≤0.25%) can be an effective bio-additive, providing improved workability with negligible compromise in strength and durability. In contrast, higher dosages undermine matrix integrity and performance. Future work is recommended to assess long-term microstructural evolution, field exposure durability, and adaptability across diverse cementitious systems.
The research endeavors to harness the benefits stemming from the integration of constraint theory into construction project management, with the primary goal of mitigating project completion delays. Additionally, it employs fuzzy analysis to determine the relative significance of fundamental constraints within projects by assigning them appropriate weights. The research problem primarily revolves around two key issues. Firstly, the persistent utilization of outdated methodologies and a heavy reliance on workforce experience without embracing modern computerized technologies. Secondly, the recurring problem of project delivery delays. Construction projects typically encompass five fundamental constraint types: cost restrictions, tim
... Show MoreThe research aims to show the possibility of adopting the market approach to measure the fair value of biological assets in Iraq, by applying to a sample of the company listed on the Iraq Stock Exchange, where the Middle East Fish Production and Marketing Company was selected from among 7 companies representing the agricultural sector in Iraq, and according to the availability of data and for five years, the financial statements were presented of the measurement and disclosure of biological assets at fair value according to the market approach, One of the most important conclusions reached by the researcher is the The possibility of measuring and disclosing biological assets at fair value according to the market approach in the Ira
... Show MoreThe assessment of the environmental impact of the cement industry using the Leopold Matrix is to determine the negative and positive impacts on the environment resulting from this industry, and what are the long-term and short-term effects, direct and indirect, and the amount of these effects and potential risks, and that this evaluation process is done through a number of methods, including Matrix method, including (Leopold).
The importance of the research because the cement occupies is of great importance in the world, especially in our country, Iraq, in the sector of construction and modernity, and the toxic emissions and solid waste produced by the production of this material. <
... Show MoreObjective. Glass-ionomer and resin-modified glass-ionomer cements are versatile materials with the ability to form a direct bond with tooth tissues. The aim of this study was to formulate a novel class of dental bio-interactive restorative material (pRMGIC) based on resin-modified glass-ionomer cements via the inclusion of an organophosphorus monomer, ethylene glycol methacrylate phosphate, with a potential to improve the mechanical properties and also function as a reparative restorative material. Methods. pRMGIC was formulated with modification of the resin phase by forming mixes of ethylene glycol methacrylate phosphate (EGMP; 0–40%wt) and 2-hydroxyethyl methacrylate monomer into the liquid phase of a RMGIC (Fuji II LC, GC Corp.).
... Show MoreIn this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and
... Show MoreThe gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content.
Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by u
... Show MoreNowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreThe importance of this research is due to its importance goals, Which are about the attempt of researchers to investigate the probability of depending on businesses, environments to transform organizations, performance in away that enhance the leading role of organizations in their environments , and through views of a number of the staff working in the foundation of technical institutes in Mosul. .
After deciding the methodology of the study that ,in one hand ,performs the goals of the study , and achieving a suitable theoretical framework to present the concepts of businesses, environments and the leadin
... Show MoreThis study confirms the ubiquitin conjugating enzyme 2B (Rad6) plays a significant role in the DNA repair pathway also because the ubiquitin-conjugating pathway. The DNA repair pathway could be a variety of bypass repair mechanism where the broken base pair is bypassed by permitting the replication fork to labor under the site of injury. This is often done by a shift mechanism wherever deoxyribonucleic acid enzyme - δ is switched with DNA enzyme - η (DNAP - η). Site of DNAP - η is massive enough to permit the broken ester to labor under, and so bypass the broken nucleotide. However, this is often potential solely through the involvement of Proliferating cell nuclear antigen (PCNA) that could be a processivity issue and it acts as a plat
... Show More