In this paper, we introduce and discuss an extended subclass〖 Ą〗_p^*(λ,α,γ) of meromorphic multivalent functions involving Ruscheweyh derivative operator. Coefficients inequality, distortion theorems, closure theorem for this subclass are obtained.
In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.
In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreThis article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th
... Show MoreContents IJPAM: Volume 116, No. 3 (2017)
Necessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
Background:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreA three species food web model involving a stage structure and cannibalism in the top predator species is proposed and studied. It is assumed that the prey species growth logistically in the absence of predator and the predation process occurred according to theLotka-Volterra functional response. The existence, uniqueness and bounded-ness of the solution of the model are investigated. The local and global stability conditions of all possible equilibrium points are established.The persistence conditions of the model are also determined. The local bifurcation near each of the equilibrium points is analyzed. The global dynamics of the model is investigated numerically and compared with the obtained analytical results. It is observed that the p
... Show MoreAbstract
The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg
... Show More