In this paper, we introduce and discuss an extended subclass〖 Ą〗_p^*(λ,α,γ) of meromorphic multivalent functions involving Ruscheweyh derivative operator. Coefficients inequality, distortion theorems, closure theorem for this subclass are obtained.
Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.
Abstract
The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg
... Show MoreIn this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
In this paper, we proposed to zoom Volterra equations system Altfazlah linear complementarity of the first type in this approximation were first forming functions notch Baschtdam matrix and then we discussed the approach and stability, to notch functions
The operator ψ has been introduced as an associated set-valued set function. Although it has importance for the study of minimal open sets as well as minimal I-open sets. As a result of this study, we introduce minimal I^*-open sets . In this study, several characterizations of minimal I^*-open sets are also investigated. This study also discusses the role of minimal I^*-open sets in the *-locally finite spaces. In an aspect of topological invariant, the homeomorphic images of minimal I^*-open set has been discussed here.
The nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
In the current paper, we study the structure of Jordan ideals of a 3-prime near-ring which satisfies some algebraic identities involving left generalized derivations and right centralizers. The limitations imposed in the hypothesis were justified by examples.
‎ Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19 pandemic ‎has been spreading to many countries in the world. The ongoing COVID-19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In the absence of any effective therapeutics or drugs ‎and with an unknown epidemiological life cycle, predictive mathematical models can aid in ‎the understanding of both control and management of coronavirus disease. Among the important ‎factors that helped the rapid spread of the ep
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.