Surfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This paper utilizes regression models to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, Copper alloy, and Gray cast iron) were considered with different cutting speed ( ) and feed rate ( ). A mathematical Model depending on statistical-mathematical method between surface roughness (Rz ) and cutting condition ( , ) were derived, for the three materials. The matrix of test conditions included cutting speeds of the 16, 30, 45 and 60 m/min, feed rates of 0.17, 0.35 and 0.7 mm/rev while the depth of cut has been kept constant. The effect of cutting parameters on surface roughness is evaluated and the optimum cutting condition for minimizing the surface roughness is determined. Mathematical model has been established between the cutting conditions and surface roughness using regression. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the surface roughness in the turning machining. As the results of this work, the mathematical models were used in predicting surface roughness, can be used in CAD-CAM manufacturing systems, this mathematical model helps engineer to reduce the efforts. Mathematical models shows that the decreasing in the feed rate resulted in better surface roughness and increasing cutting speed resulted in better surface roughness. The goal of this work is to identify a relationship between experimental results and theoretical model, and study the proper process values for machining, to increasing the rates for raising the quality (better surface roughness).
The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
The free piston engine linear generator (FPELG) is a simple engine structure with few components, making it a promising power generation system. However, because the engine works without a crankshaft, the handling of the piston motion control (PMC) is the main challenge influencing the stability and performance of FPELGs. In this article, the optimal operating parameters of FPELG for maximising engine performance and reducing exhaust gas emissions were studied. Moreover, the influence of adding hydrogen (H2) to compressed natural gas (CNG) fuel on FPELG performance was investigated. The influence of operating parameters on in-cylinder pressure was also analysed. The single-piston FPELG fuelled by CNG blended with H2 was used to run the expe
... Show MoreThe inhibitive action of a blend of sodium nitrite/sodium hexametaphosphate (SN+SHMP) on corrosion of carbon steel in simulated cooling water systems (CWS) has been investigated by weight loss and electrochemical polarization technique. The effect of temperature, velocity, and salts concentrations on corrosion of carbon steel were studied in the absence and presence of mixed inhibiting blend. Also the effect of inhibitors blend concentrations (SN+SHMP), temperatures, and rotational velocity, i.e., Reynolds number (Re) on corrosion rate of carbon steel were investigated using Second-order Rotatable Design (Box-Wilson Design) in performing weight loss and corrosion potential approach. Electrochemical polarization measurements
... Show MoreNowadays, there is increased interest in the biosynthesis of microbial melanin related to their numerous biological functions and applications in many fields, especially in medical fields, including immune-modulating, antimicrobial antibiotic, antiviral antivenin, anticancer, antitumor activity, and anti-biofilm activity. Pyomelanin is a hydrophobic macromolecule that is typically dark brown or black in color, formed by the oxidative polymerization of phenolic or indolic compounds. Pyomelanin is reported to be safe for consumption, thus providing a crucial strategy for biocontrol of biofilm. Furthermore, natural pyomelanin is known as a potent antioxidant, photoprotective, and free radical scavenging. Objective: This study focuses on the
... Show More
The paper is concerned with, the behavior of the hydrostatic thrust bearings lubricated with liquid-solid lubricants using Einstein viscosity formula, and taking into account the centrifugal force resulting from high speed. Also studied is the effect of the bearing dimensions on the pressure, flow rate, load capacity, shear stress, power consumption and stiffness.
The theoretical results show an increase in load capacity by (8.3%) in the presence of solid graphite particles with concentration of (16%) by weight as compared with pure oil, with increasing shear stress. .
In general the performance of hydrostatic thrust bearings improve for load carrying capacity, volume flow rate,
... Show MoreThe crystalline zeolite, namely faujasite type Y with SiO2/Al2O3 mole ratio of 5 was used as raw material for preparation of isomerization catalysts. A 0.5 wt % Pt/HY-zeolite catalyst was prepared by impregnation of the decationized HY-zeolite with chloroplatinic acid. The dectionized HY-zeolite was treated with HCl, HNO3 and HI promoters using different normalities and with different concentrations of Sn, Ni and Ti promoters by impregnation method to obtain acidic and metallic promoters' catalysts, respectively. A 0.5 wt% of Pt was added to above catalysts using impregnation method. Isomerization of n-hexane was carried out at different prepared catalysts. The isomerization temperature varied from 250–325° C over weight hourly space
... Show MoreMR Younus, Nasaq Journal, 2022
The purpose of this paper is to depict the effect of adding a hydraulic accumulator to a hydraulic system. The experimental work includes using measuring devices with interface to measure the pressure and the vibration of the system directly by computer so as to show the effect of accumulator graphically for real conditions, also the effects of hydraulic accumulator for different applications
have been tested. A simulation analysis of the hydraulic control system using MATLAB.R2010b to study was made to study the stability of the system depending on the transfer function, to estimate the effect of adding the accumulator on stability of the system. A physical simulation test was made for the hydraulic system using MATLAB to show the ef