Surfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This paper utilizes regression models to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, Copper alloy, and Gray cast iron) were considered with different cutting speed ( ) and feed rate ( ). A mathematical Model depending on statistical-mathematical method between surface roughness (Rz ) and cutting condition ( , ) were derived, for the three materials. The matrix of test conditions included cutting speeds of the 16, 30, 45 and 60 m/min, feed rates of 0.17, 0.35 and 0.7 mm/rev while the depth of cut has been kept constant. The effect of cutting parameters on surface roughness is evaluated and the optimum cutting condition for minimizing the surface roughness is determined. Mathematical model has been established between the cutting conditions and surface roughness using regression. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the surface roughness in the turning machining. As the results of this work, the mathematical models were used in predicting surface roughness, can be used in CAD-CAM manufacturing systems, this mathematical model helps engineer to reduce the efforts. Mathematical models shows that the decreasing in the feed rate resulted in better surface roughness and increasing cutting speed resulted in better surface roughness. The goal of this work is to identify a relationship between experimental results and theoretical model, and study the proper process values for machining, to increasing the rates for raising the quality (better surface roughness).
Photonic Crystal Fiber Fabry–Perot Interferometers (FPI) based on Surface Plasmon Resonance (SPR) was investigated in this paper in order to detect changes in photonic crystal fiber sensitivity with increasing temperature. FPI is composed of a PCF (ESM-12) solid core spliced with a single-mode fiber (SMF) on one side and a 40nm thick gold Nano film on the other. In order to obtain the SPR curve, the end of PCF can be spliced with the side of SMF before covering the gold film on the PCF. SPR results are included in the suggested sensor, based on the conclusions of the investigations. Resolution (R) is 0.0871, Signal-to-Noise Ratio (SNR) is 0.1867, a figure of merit (FOM) is 0.0069, and sensitivity (S) is 1.1481 . This sensor proposed is s
... Show MoreAgricultural nozzles usually produce a different drops size depending on the pressure and the physical condition (work life) of the nozzle besides producing a wide range of the drops spectrum in the spray cloud. In this paper the standard flat fan nozzles were investigated regarding the effect of the working pressure and the nozzle physical condition (new and worn nozzles). The size of drops and the spectrum of drops across the long axis of the spray pattern were examined by using Sympatec GmbH Laser Diffraction. Reducing the working pressure from 3 to 2 and then to 1 caused production of larger drops, also using worn nozzles (especially with lower pressure) changed the drops size whi
Abstract
That Iraq's dependence on the revenues of the oil product in financing its development programs and growth rates , Making the economy affected by external forces represented by fluctuations in crude oil prices in the global market, Which is directly reflected on the performance and efficiency of the Iraqi economy.
The study adopted its objectives to analyze the time series for the period (1988 - 2015) through the use of standard and statistical methods, Four standard models were estimated to reach those targets, Where the results of the stability test showed instability of most variables at their original level, But to achieve stability when taking the first differences, While the result
... Show MoreThe city has normal natural state, and the man has a usual movement, change and search for the new .Also, the city has a usual change and transform in its time, place and quality (sizes)structures. The city has a solid memory diving into the past and the future and reflects The real present, and this memory has a timing layers change into real materialistic place making the city has accumulated overlapping circles which is hard to break u , and it broadcasts the lockup timing density ,in which there is no visual record precisely, it is just like((the social record)) that evaluates the un visual relationships between the components and parts of the city (community and form) in a visual quiet exhibition and transform change inside.
... Show MoreThe objective of the present study is to determine the effect of Kaolin as a fuel oil additive to minimize the fireside corrosion of superheater boiler tubes of ASTM designation (A213-T22) by increasing the melting point of the formed slag on the outside tubes surface, through the formation of new compounds with protective properties to the metal surface. The study included measuring corrosion rates at different temperatures with and without additive use with various periods of time, through crucible test method and weight loss technique.
A mathematical model represents the relation between corrosion rate and the studied variables, is obtained using statistical regression analysis. Using this model,
... Show MoreIn this work Study effect of annealing temperature on the Structure
of a-Se and electrical properties of a-Se/c-Si hetrojunction have been
studied.The hetrojunction fabricated by deposition of a-Se film on c-
Si using thermal evaporation.
Electrical properties of a-Se/ c-Si heterojunction include I-V
characteristics, in dark at different annealing temperature and C-V
characteristics are considered in the present work.
C-V characteristics suggested that the fabricated diode was
abrupt type, built in potential determined by extrapolation from
1/C2-V curve. The built - in potential (Vbi) for the Se/ Si System
was found to be increase from 1.21 to 1.62eV with increasing of
annealing temperature
This study deals with free convection heat transfer for the outer surface of two
cylinders of the shape of (Triangular & Rectangular fined cylinders with 8-fins),
putted into two different spaces; small one with dimension of (Length=1.2m,
height=1m, width=0.9m) and large one with dimension of (Length=3.6m, height =3m,
width=2.7m). The experimental work was conducted with air as a heat transport
medium. These cylinders were fixed at different slope angles (0o, 30o, 60o and 90o)
.The heat fluxes were (279, 1012, 1958, 3005, 4419) W/m2, where heat transferred by
convection and radiation. In large space, the results show that the heat transfer from
the triangular finned cylinder is maximum at a slope angle equals
The triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.