The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreOne of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreRandom matrix theory is used to study the chaotic properties in nuclear energy spectrum of the 24Mg nucleus. The excitation energies (which are the main object of this study) are obtained via performing shell model calculations using the OXBASH computer code together with an effective interaction of Wildenthal (W) in the isospin formalism. The 24Mg nucleus is assumed to have an inert 16O core with 8 nucleons (4protons and 4neutrons) move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. The spectral fluctuations are studied by two statistical measures: the nearest neighb
Using a reduction of TRIM simulation data, the sputtering yield behaviour of Zinc target bombard by heavy Xenon ions plasma is studied. The sputtering yield as a function of Zinc layer width, Xenon ion number, energy of ions, and the angle of ion incidence are calculated and illustrated graphically. The corresponding energy loss due to ionization, vacancies and phonons, are graphically shown and discussed. Further, we fit the calculations and expressions for fitted curves are presented with its coefficients.
In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal
... Show MoreThin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
Highlighting the role of the movement and its dramatic dimensions, as an artistic product, whether at the level of cinema or television in general, and the stages of its influence within the structure of the cinematographic scene in particular, had an effective role in the continuation of the structure of the event according to its dramatic and aesthetic process, and from this the research problem crystallized in the following question: What is How the kinetic diversity of the camera in the structure of the cinematographic scene is achieved to achieve the maximum possible benefit by extrapolating all opinions in line with the objectives of the research, the research presented and two topics and the introduction were divided, which
... Show More