Background: image processing of medical images is major method to increase reliability of cancer diagnosis.
Methods: The proposed system proceeded into two stages: First, enhancement stage which was performed using of median filter to reduce the noise and artifacts that present in a CT image of a human lung with a cancer, Second: implementation of k-means clustering algorithm.
Results: the result image of k-means algorithm compared with the image resulted from implementation of fuzzy c-means (FCM) algorithm.
Conclusion: We found that the time required for k-means algorithm implementation is less than that of FCM algorithm.MATLAB package (version 7.3) was used in writing the programming code of our w
Algorithms for Arabic stemming available in two main types which are root-based approach and stem-based approach. Both types have problems which have been solved in the proposed stemmer which combined rules of both main types and based on Arabic patterns (Tafealat1) to find the added letters. The proposed stemmer achieved root exploration ratio (99.08) and fault ratio (0.9).
In the last decade, 3D models gained interest in many applications, such as games, the medical field, and manufacture. It is necessary to protect these models from unauthorized copying, distribution, and editing. Digital watermarking is the best way to solve this problem. This paper introduces a robust watermarking method by embedding the watermark in the low-frequency domain, then selecting the coarsest level for embedding the watermark based on the strength factor. The invisibility of the watermark for the proposed algorithm is tested by using different measurements, such as HD and PSNR. The robustness was tested by using different types of attacks; the correlation coefficient was applied for the evaluati
... Show MoreThe lossy-FDNR based aclive fil ter has an important property among many design realizations. 'This includes a significant reduction in component count particularly in the number of OP-AMP which consumes power. However the· problem of this type is the large component spreads which affect the fdter performance.
In this paper Genetic Algorithm is applied to minimize the component spread (capacitance and resistance p,read). The minimization of these spreads allow the fil
... Show MoreImage retrieval is an active research area in image processing, pattern recognition, and
computer vision. In this proposed method, there are two techniques to extract the feature
vector, the first one is applying the transformed algorithm on the whole image and the second
is to divide the image into four blocks and then applying the transform algorithm on each part
of the image. In each technique there are three transform algorithm that have been applied
(DCT, Walsh Transform, and Kekre’s Wavelet Transform) then finding the similarity and
indexing the images, useing the correlation between feature vector of the query image and
images in database. The retrieved method depends on higher indexing number. <
Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreIn this paper an algorithm for Steganography using DCT for cover image and DWT for hidden image with an embedding order key is proposed. For more security and complexity the cover image convert from RGB to YIQ, Y plane is used and divided into four equally parts and then converted to DCT domain. The four coefficient of the DWT of the hidden image are embedded into each part of cover DCT, the embedding order based on the order key of which is stored with cover in a database table in both the sender and receiver sender. Experimental results show that the proposed algorithm gets successful hiding information into the cover image. We use Microsoft Office Access 2003 database as DBMS, the hiding, extracting algo
... Show MoreDetection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreClassification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff
... Show More