Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreIn this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show MoreIn This study a comparison between Proteus mirabilis DNA and Candida albicans DNA in Arthritis. Fourteen Proteus isolates (11.6%) were collected from 120 specimens collected from midstream urine of patients of both sex and different ages attending different hospitals in Baghdad. Antibiotic sensitivity assay showed that All Proteus mirabilis recovered from UTI developed multidrug resistance and variable degree of resistance. Histopathological changes in model treated with Proteus mirabilis DNA revealed congestion, inflammatory cells infiltration, oedema, hemorrhagic exudates as well as necrotic cells. Furthermore, articular joints damage has been noticed with articular tissue in ligament and lining epithelium. In addition, an aggregation
... Show MoreIn this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreNowadays, the rapid development of multi-media technology and digital images transmission by the Internet leads the digital images to be exposed to several attacks in the transmission process. Therefore, protection of digital images become increasingly important.
To this end, an image encryption method that adopts Rivest Cipher (RC4) and Deoxyribonucleic Acid (DNA) encoding to increase the secrecy and randomness of the image without affecting its quality is proposed. The Means Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Coefficient Correlation (CC) and histogram analysis are used as an evaluation metrics to evaluate the performance of the proposed method. The results indicate that the proposed method is secure ag
... Show MoreIn this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image
... Show More