Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91–0.92 and an accuracy range of 88–92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
A standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.
This paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreBackground
Respiratory tract aspergillosis is a pulmonary disease cause by aspergillus species which are opportunistic fungi that mainly infect immuno-compromised patients .
Objective(s)
The present study aimed to detect the frequency of pulmonary aspergillosis among clinically suspected and under follow up tuberculosis patients conducted at Tropical Diseases Teaching Hospital, Omdurman, Khartoum State , Sudan during the period from December 2019 to November 2020.
Materials and Methods
One hundred and fifty sputum samples were collected from suspected cases of pulmonary tuberculosis and under follow up tuberculosis patients. All specimens were examined using 20% KOH and cultured on two
... Show MoreSignature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also unable to adjust to various
... Show MoreThe exchanges in various fields,like economics, science, culture, etc., have been enhanced unceasingly among different countries around the world in the twenty-first century, thus, the university graduate who masters one foreign language does not meet the need of the labor market in most countries.So, many universities began to develop new programs to cultivate students who can use more foreign languages to serve the intercultural communication. At the same time, there is more scientific research emerged which is related to the relationship between the second and third languages. This humble research seeks to explain the relevant concepts and analyze the real data collected from Shanghai International Studies University in China, to expl
... Show MoreThis article studies a comprehensive methods of edge detection and algorithms in digital images which is reflected a basic process in the field of image processing and analysis. The purpose of edge detection technique is discovering the borders that distinct diverse areas of an image, which donates to refining the understanding of the image contents and extracting structural information. The article starts by clarifying the idea of an edge and its importance in image analysis and studying the most noticeable edge detection methods utilized in this field, (e.g. Sobel, Prewitt, and Canny filters), besides other schemes based on distinguishing unexpected modifications in light intensity and color gradation. The research as well discuss
... Show More