Owing to their remarkable characteristics, refractory molybdenum nitride (MoNx)-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoNx materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies on various reaction routes have emphasized that the transfer of adsorbed hydrogen atoms from the N-vacant sites reduces the activation barriers for bond breaking at key structural linkages. Density functional theory has recently provided an atomic-level understanding of Mo–N systems as active ingredients in hydrotreating processes. These Mo–N systems are potentially extendible to the hydrogenation of more complex molecules, most notably, oxygenated aromatic compounds.
The optimum conditions for the production of neutral protease from local strain Aspergillus niger var carbonarius by solid – state fermentation system (Wheat bran) moisted with 0.2 M phosphate buffer (PH7.0) . the hydration ratio was 1:5 (V:W) . the concentration of inoculum was 1×106 spores per 10 gram of solid materials , initial P H 6.5 and 96 hours of incubation period at 30? C .the enzyme activity was 1300 unit / ml and specific activity was 1550 unit / mg protein .
Background: The microbial production of substances that have the potency to suppress the growth of other microorganisms is probably one of the prevalent defense strategy developed in nature, microorganisms produce a variable bunch of microbial defense systems, which include antibiotics, metabolic by-products, lytic agents, bacteriocins and others. Objective: The purpose of the present study was to isolate and identify Enterococcus faecium isolates then detecting its ability of carrying the gene responsible for enterocin production in this species. Materials and methods: Out of 50 samples from different sources (food and clinical sources) were collected for the Enterococcus faecium isolation, and the isolated bacteria Enterococ
... Show MoreWater contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreBackground: Bacteriocin is a peptidic toxin has many advantages to bacteria in their ecological niche and has strong antibacterial activity. Objective: The aim of this study was to evaluation of bacteriocin using Streptococcus sanguinis isolated from human dental caries.
Subjects and Methods: Thirty five streptococcus isolates were diagnosed and tested for their production of bacteriocin, and then the optimal conditions for production of bacteriocin were determined. After that, the purification of bacteriocin was made partially by ammonium sulfate at 95% saturation levels, followed by and gel filtration chromatography
... Show MoreStaphylococcus aureus is a common pathogen associated with eye·s
infections. S. aureus is capable of biofilm fonnation, which increases its persistence and boots its levels of antimicrobial resistance . A total of 50
- aureus isolated from eyes <>f patientwith eye's infection : 41( 82%)
isolates were positive - alpha tox in production and 37 (74 %) isolates were posilive - biofilm formation .Where as 32 (64%) isolates were positive - alpha toxin production .and biotilm formation, 11 (22%) Lsolatcs were negative- alpha toxin production and biofilm formation and 7(14%) isolates were showed &nbs
... Show MoreThe research study included the synthesis of a new series of heterocyclic derivatives containing the antibiotic Levofloxacin. The first way provides for the reaction of Levofloxacin with thionyl chloride in benzene as a solvent to give an acid chloride derivative. A new class of acid hydrazide synthesized from Levofloxacin was studied. Schiff bases were produced via the reaction of acid hydrazide with substituted aromatic ketones in methanol. The next stage involved the response of Schiff bases with thioglycolic acid and mono chloroacetic acid in DMF to produce derivatives of the antibiotic levofloxacin that have five heterocyclic members, including the derivatives thiazolidine-4-one and oxazolidine-5-one. The FTIR, 1HNMR, a
... Show MoreThe optimum cultural conditions for garamicidin production by local isolate B.brevis were studied.Best result was obtained when the isolate B.brevis was grown on media composed of 1%glucose as carbon source,1% ammonium chloride as a nitrogen source ,0.5% Dipotassium hydrogen orthophosphate as a phosphate source and after 48 hours of incubation at 30C .Garamicidin has been extracted and purified through acid precipition and then extracted by organic solvent (ether& acetone ).Using HPLC the garamicidin antibiotic showed three types A,B and C garamicidin .
The degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show More