There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardness, Calcium, Magnesium, Total Solids, Nitrite, Nitrates, Ammonia, and Silica are to be used to construct the specific model, while pH, Fluoride, Aluminium, Nitrite, Nitrate, Ammonia, Silica, and Orthophosphate of the treated water were eliminated from the analysis. For modeling the coagulation and flocculation process temperature, Alkalinity and pH of raw water were the depended variables of the model. As for the modeling process turbidity of the treated water was used as the output variable. In general, the linear models including model-driven type, (Multivariate multiple regression, MMR and Multiple linear regression, MLR) have slightly higher prediction efficiencies than the, data-driven type (artificial neural network, ANNM). The coefficients of determination (R2) reached 66 to 85% for the MMR and MLR models and 65 to 81% for the ANN models.
Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreThis study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreThe productivity of oil wells may be improved by determining the value of enhancing well productivity and the likely reasons or sources of formation damage after the well has been recognized as underperforming. Oil well productivity may be improved, but the economics of this gradual improvement may be compromised. It is important to analyze the influence of the skin effect on the recovery of the reserve.
The acid treatment evaluated for the well AD-12, primarily for the zone Mi4; using a license of Stimpro Stimulation Software to validate the experimental work to the field scale, this software is considered the most comprehensive instrument for planning and monitoring matrix acid treatments and utilizing actual data to prov
... Show MoreThe productivity of oil wells may be improved by determining the value of enhancing well productivity and the likely reasons or sources of formation damage after the well has been recognized as underperforming. Oil well productivity may be improved, but the economics of this gradual improvement may be compromised. It is important to analyze the influence of the skin effect on the recovery of the reserve. The acid treatment evaluated for the well AD-12, primarily for the zone Mi4; using a license of Stimpro Stimulation Software to validate the experimental work to the field scale, this software is considered the most comprehensive instrument for planning and monitoring matrix acid treatments and utilizing actual data to provide a far
... Show MoreBackground: Appendectomy is still one of the most commonly performed emergency surgical procedures worldwide.Avoiding delays in the diagnosis in these patients may play a role in reducing observed morbidity.Aim of study:To analyze the clinico-pathological profile and outcomes of patients undergoing emergency appendectomies to determine risk factors influencingcomplicaions.Type of the study: A prospective analytic studyPatients and Methods: The study involves 108 patients underwent emergency appendectomies at Al-kindy teaching hospital from April 2014 to March 2015. Appendicitis was categorized into two groups perforated andnonperforatedappendicities. A comparison between them was made in regard to Gender, Age, clinical presentation, inve
... Show More