Preferred Language
Articles
/
NhZrGIcBVTCNdQwC1jbA
Performance Evaluation of Al-Karkh Water Treatment Plant Using Model-driven and Data-Driven Models
...Show More Authors
Abstract<p>There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardness, Calcium, Magnesium, Total Solids, Nitrite, Nitrates, Ammonia, and Silica are to be used to construct the specific model, while pH, Fluoride, Aluminium, Nitrite, Nitrate, Ammonia, Silica, and Orthophosphate of the treated water were eliminated from the analysis. For modeling the coagulation and flocculation process temperature, Alkalinity and pH of raw water were the depended variables of the model. As for the modeling process turbidity of the treated water was used as the output variable. In general, the linear models including model-driven type, (Multivariate multiple regression, MMR and Multiple linear regression, MLR) have slightly higher prediction efficiencies than the, data-driven type (artificial neural network, ANNM). The coefficients of determination (R<sup>2</sup>) reached 66 to 85% for the MMR and MLR models and 65 to 81% for the ANN models.</p>
Scopus Crossref
View Publication
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dynamical Study of An SIR Epidemic Model With Nonlinear Incidence Rate and Regress of Treatment
...Show More Authors

   In this research, dynamical study of an SIR epidemical model with nonlinear direct incidence rate (Beddington-De Angelis ) type, and regress of treatment investigated .An  analytical study  to the model shows that there are two equilibrium points appear, the discussed successfully with sufficient condition, the existence of local bifurcation and Hopf bifurcation was analyzed, finally numerical simulations are done to explain the analytic studies.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation
...Show More Authors

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Measurement of Pollution Level with Particulate Matter in Babylon Concrete Plant and Evaluation of Oxidative Stress and Hematological Profile of Plant Workers
...Show More Authors

The impact of exposure to different sizes of particulate matter (PM1, PM2.5, PM7, and PM10) was evaluated in  Babylon concrete plant workers who had been exposed to concrete dust for at least 10 years.  The effects of  these particles on the hematological parameters, malondialdehyde (MDA) levels, and  antioxidant enzymes (catalase and glutathione peroxidase ) were examined. The results exhibited that the levels of PM2.5 and PM10 were higher than the acceptable limits approved by the National Ambient Air Quality Standards (NAAQS). The blood parameters, namely white blood cells (WBC), red blood cell (RBC) and platelets counts, demonstrated non-significant differences between workers exposed to the PM as compared to the control gro

... Show More
Scopus (3)
Scopus Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Journal Of Computational Innovation And Analytics (jcia)
PERFORMANCE MEASURE OF MULTIPLE-CHANNEL QUEUEING SYSTEMS WITH IMPRECISE DATA USING GRADED MEAN INTEGRATION FOR TRAPEZOIDAL AND HEXAGONAL FUZZY NUMBERS
...Show More Authors

In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The Effect of Magnetic Water for Chemical Fertilizer in Tomato Plant
...Show More Authors

The research aims to find ways to minimize the use of quantities of chemical fertilizers in agriculture in order to get to an environment that is free of contaminants. Magnetized water technology used in the experience of planting seeds of tomatoes Thomson type to obtain a higher efficiency to absorb fertilizer NRK in the protected environment of the period from February to June. Magnetized water system used locally made levels Gaues (4800,2500,1500) concentrations of 50 to 100% for each level and the rate of (4) replicates, and results indicated that the severity of the magnet (4800 Gaues) and a concentration of 50% gave the highest percentage of tomato fruit size and intensity ( 1500 Gaues) and a concentration of 100% did not give any inc

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat May 01 2021
Journal Name
Https://www.researchgate.net/journal/journal-of-physics-conference-series-1742-6596
The management of water distribution network using GIS application case study: AL-Karada area
...Show More Authors
Abstract<p>Clean water supply is one of the major factors contributing significantly to society’s socio-economic transformation by improving living standards, health, and increasing productivity. It is imperative to plan and construct appropriate water supply systems in modern society, which supply various segments of society with safe drinking water according to their requirements to ensure adequate and quality water supply. In the current study, here was an attempt to develop a model for geographic information systems to manage the assets of the water distribution networks in the Karrada region and to evaluate the network geometrically, and from the results of the engineering analysis of the</p> ... Show More
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
A Mathematical Model of a Thermally Activated Roof (TAR) Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature
...Show More Authors

This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref