Tanuma and Zubair formations are known as the most problematic intervals in Zubair Oilfield, and they cause wellbore instability due to possible shale-fluid interaction. It causes a vast loss of time dealing with various downhole problems (e.g., stuck pipe) which leads to an increase in overall well cost for the consequences (e.g., fishing and sidetrack). This paper aims to test shale samples with various laboratory tests for shale evaluation and drilling muds development. Shale's physical properties are described by using a stereomicroscope and the structures are observed with Scanning Electron Microscope. The shale reactivity and behavior are analyzed by using the cation exchange capacity testing and the capillary suction test is utilized for selecting shale inhibitor base. As a result, four drillings muds are formulated with different additives and approved by using the Linear Swelling Meter and the Hot Rolling experiments. Tanuma’s shale is at higher reactivity level, where it is moderate to high active shale than Zubair’s shale, which is at a low to moderately reactive formation. Microfractures and micropores are excited in both formations and potentially in Tanuma’s shale. The shale stability can be achieved by adding 8 % of KCl for Tanuma’s mud and 4% of KCl for Zubair’s mud. The filtration controls are contributed to seal the shale open structures and adding the Poly amino acid hydration suppressant reduced the risk of shale swelling significantly. The results can be used for designing drilling mud to reduce shale instability issues and the cost.
This research aims to deal with contemporary knowledge methodology to correlate between operations strategy and technological change or modernization in productive paths for industrial organizations depend on practical indicators for competitive priorities that is objectives of operations performance.
The research is based on main hypothesis, concentrates on determination of technological change which is decided by the level of technology deterioration in current operations path compared with the competitors leaders-technology leaders.
We apply these concepts on hypothetical case to two similar companies in their production nature and te
... Show MorePorosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MoreThis investigation pertains to the evaluation of water quality in SAWA Lake, located in the Al-Muthanna province of Southern Iraq, from 1977 to 2020. Understanding the water quality and assessments of this Lake is of great importance. The Lake is home to small, transparent, blind fish measuring approximately 10 cm and is often referred to as the "wonderful" or "strange" Lake due to its many unique features. The study focuses on several elements to represent water quality, including total dissolved solids (TDS), electrical conductivity (EC), pH, and temperature (T), which were measured directly in the field. Additionally, scientific concepts such as K+, Ca2+, Cl-, HCO
Hydrodynamics is the interpretation of subsurface fluids and pressures to explain and predict hydrocarbon occurrence and trapping. Different models of fluid flow and hydrocarbon entrapments were constructed for the Mishrif Formation in (Rumaila South RU, Rumaila North R, West Qurna WQ, Majnon MJ, and ZubairZB) oilfields in Basra, southern Iraq. The dynamic flow within the oil reservoir was analyzed by measuring the specific gravity, hydrostatic pressure, hydrodynamic pressure, pressure gradient, salinity and hydraulic head. Fluid saturation in the pore space, hydrodynamic parameters, density, permeability and buoyancy influence fluid flow. The hydrodynamic model indicates that the oil fields are non-isolated reservoirs with a unifor
... Show MoreStable isotope composition of δ2H and δ18O was investigated in the water resources of the Shwan sub-Basin northeast of Iraq. The study objects conceived the possible factors that affect the stable isotopes’ composition in precipitation additionally to achieve information concerning recharge processes and estimate the groundwater recharge sources. In this study, four precipitation samples were collected at the study area for the 2020–2021 hydrological year. Thirty-two groundwater samples and one surface water sample from Lesser Zab River (LZR) were collected during the same period for two sampling seasons. The results of observed meteorological data show a very small amount of pr
The central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show More