Resource estimation is an essential part of reservoir evaluation and development planning which highly affects the decision-making process. The available conventional logs for 30 wells in Nasiriyah oilfield were used in this study to model the petrophysical properties of the reservoir and produce a 3D static geological reservoir model that mimics petrophysical properties distribution to estimate the stock tank oil originally in place (STOOIP) for Mishrif reservoir by volumetric method. Computer processed porosity and water saturation and a structural 2D map were utilized to construct the model which was discretized by 537840 grid blocks. These properties were distributed in 3D Space using sequential Gaussian simulation and the variation in OWC depth was represented by 3 initialization regions for better characterization. The total STOOIP of Mishrif reservoir in Nasiriyah oilfield was estimated to be 8951 MMSTB which is divided between two reservoir units: MB1 and MB2 in which the first contains approximately 75% of total STOOIP and the latter has the remaining 25%.
Statisticians often use regression models like parametric, nonparametric, and semi-parametric models to represent economic and social phenomena. These models explain the relationships between different variables in these phenomena. One of the parametric model techniques is conic projection regression. It helps to find the most important slopes for multidimensional data using prior information about the regression's parameters to estimate the most efficient estimator. R algorithms, written in the R language, simplify this complex method. These algorithms are based on quadratic programming, which makes the estimations more accurate.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreThis deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreUropathogenic specific protein is a genotoxic protein targeting the DNA, leading to mutations and modifications in the normal cell's DNA and subsequently, cancer development. This study aims to determine the prevalence of the usp gene in Uropathogenic Escherichia coli isolated from females with urinary tract infections and study its correlation with biofilm formation. One hundred and five urine specimens were collected from female patients (20 to 55 years old) with urinary tract infections attending hospitals. Traditional laboratory methods using selective and differential culture media were used for initial bacterial isolation and identification, and molecular techniques that targeted a segment of the 16SrRNA gene with a specific primer pa
... Show More