In this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed corresponding to a settlement equals 20% of helix diameter. The ultimate compression capacity of screw piles higher than the ultimate capacity of ordinary piles and the ultimate compression capacity increases with decreasing the aspect ratio. The ultimate bearing capacity of the flexible screw pile (L/D<20) is greater than the ordinary pile by 59.5% and with the rigid screw pile (L/D>20), the ultimate bearing capacity could reach 250% compared with the ordinary pile. Also, the estimated ultimate compression capacity of flexible screw piles well agreed with those measured experimentally, but a large difference was noted for rigid screw piles.
This paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreThe present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam
... Show MoreTwo dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreConcrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show MoreExperimental tests were conducted to study the behavior of skirted foundations rested on dry medium sandy soil subjected to vertical and inclined loads. To achieve this goal, a small-scale physical model was designed and performed which contained an aluminum circular footing (100 mm) in diameter and (10 mm) in thickness and skirts with different heights, local medium poorly graded dry sand is placed in a steel soil container (2 mm) thick with internal dimensions (1000 mm x 1000 mm in cross section and 800 mm in height). The main objective of this study was to evaluate the response of skirt attached to the foundation at different skirt (L/D) ratios (0.0, 0.5, 1.0 and 1.5) and is subjected to point load at different angles of inclinat
... Show MoreFrequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported. These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics of a plate with different
... Show MoreThe study aimed to detect the VrPIP2;7 gene using PCR approach, as well as to know the effect of the treatment with four increased melatonin concentrations of 50, 100, 150 and 200 ppm in addition to control treatment were 0 ppm on the gene expression of plasma membrane intrinsic proteins (PIP) genes in Vigna radiata L. plant exhibition for five periods of drought which is irrigation every 24 hours, 48 hours, 5 days, 10 days and every 15 days. The electrophoresis of agarose gel at a concentration of 2% showed one band when detecting the VrPIP2;7 gene with a sizeable 732 bp and using the 100 bp volume index. This gene was selected for sequencing study based on its importance as well as on the results of its gene expression. The sequencing of
... Show MoreObjective: impact of the education program for nurses' knowledge toward children under mechanical
ventilation, and to find out the relationships between nurses' knowledge and their general information.
Methodology: Quasi experimental study was carried out at the respiratory care units of Baghdad
Pediatric Teaching Hospitals started from February15th, until September 26th, 2011, A purposive (nonprobability)
sample of (23) nurses working in the respiratory care units, were selected from Children
Welfare and Pediatric Central Teaching Hospitals. The data were gathered through using of the
constructed multiple choice questionnaire using to evaluate the nurses knowledge using checklist, The
questionnaire consists of two p