Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams with minimum reinforcement was studied. ABAQUS program was utilized for Finite Element (FE) modeling and analysis of the beams. On the other hand, mesoscale modeling of concrete constituents was executed with the aid of ABAQUS PYTHON language and programing using excel sheets. The concrete beams under flexure were experimentally investigated as well as by the numerical analysis. The comparison between experimental and numerical results showed that the mesoscale model gives a better indication for representing the concrete models in the numerical approach and a more appropriate result when compared with the experimental results.
The present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam
... Show MoreIn this paper, three main generators are discussed: Linear generator, Geffe generator and Bruer generator. The Geffe and Bruer generators are improved and then calculate the Autocorrelation postulate of randomness test for each generator and compare the obtained result. These properties can be measured deterministically and then compared to statistical expectations using a chi-square test.
Roller compacted concrete (RCC) is a concrete compacted by roller compaction. The concrete mixture in its unhardened state must support a roller while being compacted. The aim of this research work was to investigate the behavior and properties of roller compacted concrete when constructed in the laboratory using roller compactor manufactured in local market to simulate the field conditions. The roller compaction was conducts in three stages; each stage has different loading and number of passes of the roller. For the first stage, a load of (24) kg and (5) passes in each direction had been employed. For the second stage, a load of (104) kg and (10) passes in each direction were conducted. Finally, at the third stage, a load of (183) kg a
... Show MoreA good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationsh
... Show MoreBackground: The long term survival of dental implants is evaluated by the amount of crestal bone loss around the implants. Some initial loss of bone around dental implants is generally expected. There is reason to believe that reflecting a mucoperiosteal flap promotes crestal bone loss in the initial phase after an implant has been inserted. The surgical placement of a dental implant fixture is constantly changing and in recent years, there has been some interest in developing techniques that minimize the invasive nature of the procedure, with flapless implant surgery being advocated. The purpose of this study was to compare the radiographic level of the peri- implant bone after implant placement between traditional flapped surgery and f
... Show MoreIn the present work the Buildup factor for gamma rays were studied in shields from epoxy reinforced by lead powder and by aluminum powder, for NaI(Tl) scintillation detector size ( ×? ), using two radioactive sources (Co-60 and Cs-137). The shields which are used (epoxy reinforced by lead powder with concentration (10-60)% and epoxy reinforced by aluminum powder with concentration (10-50)% by thick (6mm) and epoxy reinforced by lead powder with concentration (50%) with thick (2,4,6,8,10)mm. The experimental results show that: The linear absorption factor and Buildup factor increase with increase the concentration for the powders which used in reinforcement and high for aluminum powder than the lead powder and decrease with inc
... Show MoreThe wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm) and different weight percentage (0.05-0.1-0.5-1) wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro) alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS), wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of
... Show MoreThe poly(ethylene oxide) polymer (PEO) is doped with fine powder of MnCl2 salt and thin films of thickness (50–150 mm) with salt content (0, 5, 10, 15, and 20 wt%) are obtained. The AC electrical conductivity and dielectric constants are studied as a function of temperature through an impedance technique. It is found that AC conductivity increases and the calculated activation energy decreases with increasing temperature due to enhancement of the ionic conduction in the film bulk. The dielectric constants of the doped membranes increase with temperature. It is found that the peak value of the tanloss is shifted to a higher frequency at higher temperatures. The dielectric behavior is explained on the basis of
... Show MoreCorrelation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.
In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –
... Show More