Abstract The aim of this study is preparing an intellectual map according to the feedback (verbally and writhingly ) in order to learn some skills of floor exercises in the women's artistic gymnastics , In addition to that the aim of this study defines on the impacts of intellectual map according to the feedback approach, and to identify the best group between the three groups study in the learning of skills approach in this study, the researchers used the experimental method, the subject of the study included on students second class in physical education and sport sciences , Baghdad University (2014-2015) , and divided into three groups for teaching skills which was under studied .The species used the specific manner by lot for selection class (T) for second stage to resemble first an empirical group secondly which used an intellectual map according to the feedback approach .this approach applied in the class (H) writhingly and class (E) for precision group scattered into (12) students of (20) scientifically unit by average of two units in a week. After finishing the tests and previous tests , so that the researchers have been used Statistical Package for Social Sciences (SPSS) which included ( mean , standard deviation , T.test for symmetric subject, one way a nova test (F), the lesser of differences morally (L.S.D) ) . The study included to the results that using scientifically approach, which were applied, to these groups having positive effects and actively in teaching skills were being studied by different proportions.
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
Study of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of
... Show MoreSnS nanobelt thin films were deposited on glass substrates in acidic solution by chemical bath deposition (CBD) method. The belt-like morphologies of as-deposited SnS thin films were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) and Raman measurements were carried out to confirm the crystal structures and phase purities of SnS nanobelt thin films. The morphologies and phase purities of SnS thin films were influenced greatly by the tin and sulfur precursors. The bandgaps of SnS nanobelts were determined to be 1.39–1.41 eV by UV–vis absorption and photoluminescence (PL) spectra. Current-voltage ((I-V)) and current-time ((I-T)) characteristics were studied to demon
... Show MoreLasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenom
... Show MoreOptical properties of Rhodamine-B thin film prepared by PLD
technique have been investigated. The absorption spectra using
1064nm and 532 nm laser wavelength of different laser pulse
energies shows that all the curves contain two bands, B band and Q
bands with two branches, Q1 and Q2 band and a small shift in the
peaks location toward the long wavelength with increasing laser
energy. FTIR patterns for Rhodamine-B powder and thin film within
shows that the identified peaks were located in the standard values
that done in the previous researches. X-ray diffraction patterns of
powder and prepared Rhodamine-B thin film was display that the
powder has polycrystalline of tetragonal structure, while the thin film
This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.
In the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h
... Show MoreThe removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show More