Preferred Language
Articles
/
NRdyW5MBVTCNdQwCsdLE
Prenatal Markers of Foetal Complications
...Show More Authors

Prenatal markers are commonly used in practice to screen for some foetal abnormalities. They can be biochemical or ultrasonic markers in addition to the newly used cell free Deoxyribonucleic Acid (DNA) estimation. This review aimed to illustrate the applications of the prenatal screening, and the reliability of these tests in detecting the presence of abnormal chromosomes such as trisomy-21, trisomy-18, and trisomy-13 in addition to neural tube defects. Prenatal markers can also be used in the anticipation of some obstetrical complications depending on levels of these markers in the mother’s circulation. In the developed countries, prenatal screening tests are regularly used during antenatal care period. Neural tube defects, numerical and structural chromosomal abnormalities, in addition to some obstetrical problems are commonly screened for, by using prenatal tests. Maternal education about the importance of performing these tests should be done in order to improve the detection rate of foetal abnormalities and some pregnancy complications.

Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Al-khwarizmi Engineering Journal
Modeling the removal of Cadmium Ions from Aqueous Solutions onto Olive Pips Using Neural Network Technique
...Show More Authors

The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.

Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Structures
Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector
...Show More Authors

A ‘locking-bolt’ demountable shear connector (LBDSC) is proposed to facilitate the deconstruction and reuse of steel-concrete composite structures, in line with achieving a more sustainable construction design paradigm. The LBDSC is comprised of a grout-filled steel tube and a geometrically compatible partially threaded bolt. The latter has a geometry that ‘locks’ the bolt in compatible holes predrilled on the steel flange and eliminates initial slip and construction tolerance issues. The structural behaviour of the LBDSC is evaluated through nine pushout tests using a horizontal test setup. The effects of the tube thickness, strength of concrete slab, and strength of infilled grout on the shear resistance, initial stiffness, and du

... Show More
View Publication
Scopus (39)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN
...Show More Authors

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (116)
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Drinking water quality evaluation of hand pumping wells using water quality index and standard algal toxicity testing in Mansoura and Talkha cities, Egypt
...Show More Authors

Six house-hold Abyssinian pumps distributed in different villages of Mansoura (Mans-I, Mans-II and Mans-III) and Talkha (Talk-I, Talk-II and Talk-III) cities, Egypt, have been selected for regular seasonal water quality assessment during 2017. Water samples have been collected within the mid-periods of four seasons Standard assessment tools were employed for the integrated water quality assessment including Water Quality Index (WQI) and ISO standard algal toxicity test. WQI displayed remarkable local and seasonal variations with excellent (≥ 90) and good (70 - 89) only recorded for water samples collected from Mans-I pump located in sparsely populated area and far 50 meters only from the eastern (Damietta) branch of Nile River. WQI of

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
DNA Methylation Patterns of Interferon Gamma Gene Promoter and Serum Level in Pulmonary Tuberculosis: Their Role in Prognosis
...Show More Authors

Tuberculosis (TB) still remains an important medical problem due to high levels of morbidity and mortality worldwide. A series of innate immune mechanisms that create a cytokine network control the pathogenesis of tuberculosis and this response has the capacity to modify the host genomic DNA structure through epigenetic mechanisms such as DNA methylation which could constantly alter the local gene expression pattern that can modulate the metabolism of the tissues and the immune-response. Interferon-gamma (IFN-γ) is an important pro-inflammatory cytokine regulator of the innate immune response to TB. This study aims to determine DNA methylation patterns of INF-γ gene promoter and measure serum IFN- γ level in newly diagnosed TB patient

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat May 09 2015
Journal Name
International Journal Of Innovations In Scientific Engineering
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS
...Show More Authors

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting

... Show More
View Publication
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF