Background. Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective. The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods. The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results. Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion. This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.
In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 p
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot
... Show MoreABSTRACT Background: One of the challenges to use chlorhexidine is its effect on the amount of microleakage after restoration; however, use of the materials with antibacterial properties after tooth preparation and before restoration has been widespread. The objective of this, in-vitro, study was to evaluate the influence of consepsis (chlorhexidine gloconate disinfectant) application on microleakage in class II cavities restored with light cured composite using universal adhesive system; etch and rinse technique –self etch technique. Materials and Methods: Forty class II cavities were prepared on mesial and distal surfaces of 20 non-carious mandibular third molars. The cavities were divided into four groups; (n =10 for each group).
... Show MoreIn diabetes, impaired wound healing and other tissue abnormalities are considered major concerns. Many factorsaffect the time and quality of wound healing. One of the purposes of medical sciences is wound healing in a short time withreduced side effects. The herbal products are more precious in both prophylaxis as well as curative in delayed diabetic woundhealing activity when compared to synthetic drugs.A wide range of evidence has shown that capers plant possesses differentbiological effects, including antioxidant, anticancer and antibacterial effects. Phytochemical analysis shows thatC. spinosahashigh quantities of bioactive constituents, including polyphenolic compounds, which are responsible for its health-promotingeffects. The healing
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreA new series polymers was synthesized from reaction starting material Bisacodyl A or [(2-Pyridinylmethylene) di-4, 1-phenylene di acetate] with hydrogen bromide, then the products were polymerized by addition polymerization from used adipoyl and glutaroyl chloride. The structure of these compounds was characterized by FT-IR, melting points, TLC, X-Ray, DSC and 1H-NMR for starting material. These compounds were also screened for their antibacterial activists?