Background. Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective. The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods. The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results. Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion. This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.
This study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepare
... Show MoreNew hydrazone derivatives of Fenoprofen were synthesized and evaluated for their anti-inflammatory activity by means of egg white induced paw edema method. All the synthesized target compounds were characterized by FT-IR spectroscopy, 1HNMR analysis and by measure of their physical properties. The synthesis of the target compounds(H1-H4) was accomplished by multistep reaction procedures. The synthesized target compounds were show activity in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Fenoprofen) except for compound H3 which show anti-inflammatory activity higher than Fenoprofen.
Abstract
The aim of this study was to prepare rebamipide ocular inserts in order to extend its release on the ocular surface for dry eye treatment. Solubility study was applied to the drug with or without l-arginine using different solvents. Solvent casting technique was used to prepare the inserts; l-arginine was used to solubilize the drug, hydroxypropyl methylcellulose grades (E5 and K15M) and poly ethylene glycol 200 were used as excipients. The inserts were evaluated for their physical and mechanical properties, moisture loss% and absorption %, surface pH, and in-vitro drug release. The use l-arginine exhibited an enhancement of rebamipide solubility in both deionized water and phosphate buffer (pH 7.4) by a
... Show MoreMeloxicam (MLX) is non-steroidal anti -inflammatory, poorly water soluble, highly permeable drug and the rate of its oral absorption is often controlled by the dissolution rate in the gastrointestinal tract. Solid dispersion (SD) is an effective technique for enhancing the solubility and dissolution rate of such drug.
The present study aims to enhance the solubility and the dissolution rate of MLX by SD technique by solvent evaporation method using sodium alginate (SA), hyaluronic acid (HA), collagen and xyloglucan (XG) as gastro-protective hydrophilic natural polymers.
Twelve formulas were prepared in different drug: polymer ratios and evaluated for their, percentage yield, drug content, water so
... Show MoreA
A new series of bases of Schiff (H2-H4) derived from phthalic anhydrideweresynthesized. These Schiff bases were prepared by the reaction of different amines (tyrosine methyl ester, phenylalanine methyl ester, and isoniazid) with the phthalimide derived aldehyde with the aid of glacial acetic acid or triethylamine ascatalysts. All the synthesized compounds were characterized by (FT-IR and 1HNMR) analyses and were in vitro evaluated for their antimicrobial activity against six various kinds of microorganisms. All the synthesized compounds had been screened for their antimicrobial activity against two Gram-positive bacteria “Staph. Aureus, and Bacillus subtilis
... Show More: Clobetasol propionate (CP) is a potent corticosteroid used for skin conditions but often causes side effects due its systemic absorption. To improve its solubility and reduce it side effects (like skin irritation, skin atrophy, hypopigmentation and steroidal acne), Microsponge (Msg) has been employed as a unique three-dimensional particle that can encapsulate hydrophilic and lipophilic drugs. This study aims to develop and evaluate CP Msg-loaded hydrogels. Two Clobetasol-loaded ethylcellulose-based Msg formulas were prepared using the quasi-emulsion solvent diffusion method, then they were incorporated into Carbopol hydrogel. Two ratios of Carbopol 940 (1% and 1.5% w/w) were used. The prepared hydrogel were assessed for appearance, pH, dr
... Show MoreTo synthesize new hydrazone derivatives of naproxen with enhanced anti-inflammatory activity and devoid the ulcerogenic side effects. Hydrazones were synthesized by conjugation of naproxen hydrazide with seven natural and synthetic aldehyde and ketone by using glacial acetic acid as catalyst. The synthesis has been carried out following simple methodology in excellent isolated yields.The structure of the synthesized derivatives has been characterized by elemental microanalysis (CHN), FTIR Spectroscopy, and other physicochemical properties.The anti- inflammatory activity of the synthesized compounds was evaluated in vivo using the egg-white induced edema model in rats, and the results of the biological assay was found to be comparable to Nap
... Show MoreBackground: Chemotherapeutic medication treatment for cancer is typically used in conjunction with other techniques as part of a routine regimen. It is well established that the capacity of different chemotherapeutic drugs to induce apoptosis is correlated with their anticancer efficacy. Quinazolinone-based drugs have demonstrated excellent responses from several cancer cell types. These substances have a lot of potential for use as building blocks in the creation of apoptosis inducers. Objective: To assess the new quinazolinone derivatives (M1 and M2) that were recently synthesized for their potential to halt wound healing and to use the acridine orange/propidium iodide (AO/PI) double stain to assess their capacity to induce apopto
... Show More