Ultraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-based photodetectors has yet to be demonstrated. Hence, the objective of this systematic literature review is to critically analyze the data related to non-polar gallium nitride-based photodetectors. Based on the pool of literature, three categories are introduced, namely, growth and fabrication, electrical properties, and structural, morphological, and optical properties. In addition, bibliometric analysis, a precise open-source tool, was used to conduct a comprehensive science mapping analysis of non-polar gallium nitride-based photodetectors. Finally, challenges, motivations, and future opportunities of non-polar gallium nitride-based photodetectors are presented. The future opportunities of non-polar GaN-based photodetectors in terms of growth conditions, fabrication, and characterization are also presented. This systematic literature review can provide initial reading material for researchers and industries working on non-polar gallium nitride-based photodetectors.
Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
In recent years, there has been a rise in interest in the study of antibiotic occurrence in the aquatic environment due to the negative consequences of prolonged exposure and the potential for bacterial antibiotic resistance. Most antibiotic residues from treated wastewater end up in the aquatic environment as they are not eliminated in facilities that treat wastewater. Antibiotics must be identified in influent and effluent wastewater using reliable analytical techniques for several reasons. Firstly, monitoring antibiotic presence in aquatic environments. Secondly, assessing environmental risks, computing wastewater treatment plant removal efficiencies, and estimating antibiotic consumption. Therefore, this work aims to provide an overview
... Show MoreMost of the water pollutants with dyes are leftovers from industries, including textiles, wool and others. There are many ways to remove dyes such as sorption, oxidation, coagulation, filtration, and biodegradation, Chlorination, ozonation, chemical precipitation, adsorption, electrochemical processes, membrane approaches, and biological treatment are among the most widely used technologies for removing colors from wastewater. Dyes are divided into two types: natural dyes and synthetic dyes.
Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MoreThe evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated
... Show MoreThis paper proposes a self organizing fuzzy controller as an enhancement level of the fuzzy controller. The adjustment mechanism provides explicit adaptation to tune and update the position of the output membership functions of the fuzzy controller. Simulation results show that this controller is capable of controlling a non-linear time varying system so that the performance of the system improves so as to reach the desired state in a less number of samples.
In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreA recently reported Nile red (NR) dye conjugated with benzothiadiazole species paves the way for the development of novel organic-based sensitizers used in solar cells whose structures are susceptible to modifications. Thus, six novel NR structures were derived from two previously developed structures in laboratories. In this study, density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were used to determine the optoelectronic properties of the NR-derived moieties such as absorption spectra. Various linkers were investigated in an attempt to understand the impact of π-linkers on the optoelectronic properties. According to the findings, the presence of furan species led to the planarity of the molecule and a reduction
... Show MoreThis study aims to evaluate the biocompatibility of a novel filler material intended to improve the longevity of polymer systems used in prosthetics in respect of cytotoxicity and skin irritation. RTV50F silicone elastomer incorporated with various percentages of hexagonal boron nitride (H-BN) (0.1, 0.3, 0.5, 0.7, and 1 wt%) have been tested. Silicone without H-BN was utilized as the control for comparison. The in vitro cytotoxicity test includes specimens (n=18) with 10 mm in diameter and 2 mm in thickness applied directly to the normal human fibroblast cell line (NHF) and incubated for 72 hours, then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability. The skin irritati
... Show More