Ultraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-based photodetectors has yet to be demonstrated. Hence, the objective of this systematic literature review is to critically analyze the data related to non-polar gallium nitride-based photodetectors. Based on the pool of literature, three categories are introduced, namely, growth and fabrication, electrical properties, and structural, morphological, and optical properties. In addition, bibliometric analysis, a precise open-source tool, was used to conduct a comprehensive science mapping analysis of non-polar gallium nitride-based photodetectors. Finally, challenges, motivations, and future opportunities of non-polar gallium nitride-based photodetectors are presented. The future opportunities of non-polar GaN-based photodetectors in terms of growth conditions, fabrication, and characterization are also presented. This systematic literature review can provide initial reading material for researchers and industries working on non-polar gallium nitride-based photodetectors.
In this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.
In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
Fetal growth restriction is a significant contributor to fetal morbidity and mortality. In addition, there are heightened maternal risks associated with surgical operations and their accompanying dangers. Monitoring fetal development is a crucial objective of prenatal care and effective methods for early diagnosis of Fetal growth restriction, allowing prompt management and timely intervention to improve the outcomes. Screening for Fetal growth restriction can be achieved via many modalities; it can be medical, biochemical, or radiological. Some recommended combining more than one for better outcomes. Currently, there is inconsistency about the best method of Fetal growth restriction screening. In this review, a comprehensive
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.