The downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ rates to surface conditions. Different types of Inflow Performance Relationship (IPR) equations can be used for SIP interpretation, including the Straight-line method, Fetkovitch method, and Laminar Internal Turbulent (LIT) relations. Although the SIP method can be used for single-phase flow, the interpreter can restrict the IPR’s calculations to a particular phase. This research discusses the difficulties in estimating the average reservoir pressure in multilayered reservoir completed wells over their production life. The SIP technique has been applied to some producing wells in the south of Iraq, which are completed in multiple producing reservoirs previously tested with a formation tester to estimate reservoir pressure and other parameters. Two wells are taken in the south of Iraq region, Zubair Oil Field, one with cross flow between perforations and the other well with no cross flow. An average pressure is not calculated for layer A in Well-1, because there is no contribution rate. While the average pressure for Well-1, layer B is 3414.49 psia. Also, the average pressure for Well-2, layer H is not calculated because there is no rate contribution from this layer, and the maximum average pressure was calculated in layer G, which is about 2606.26 psia. It is also found that the presence of cross flow has no effect on SIP calculations.
All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing (FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals. © 2015 Chinese Laser Press
The possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a
Effective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formul
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreBackground: The treatment of dental tissues proceeding to adhesive procedures is a crucial step in the bonding protocol and decides the clinical success ofrestorations. This study was conducted in vitro, with the aim of evaluating thenanoleakage on the interface between the adhesive system and the dentine treated by five surface modalities using scanning electron microscopy and energydispersiveX-ray spectrometry. Materials and methods: Twenty five extracted premolars teeth were selected in the study. Standardized class V cavities were prepared on the buccal and lingual surfaces then the teeth divided into five main groups of (5 teeth in each group n=10) according to the type of dentine surface treatment that was used: Group (A): dentine was
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably