The Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrate that GWO reduces features from 32 to 21, thereby enhancing computational efficiency and interpretability without compromising accuracy, while customized SMOTE addresses class imbalance and enhances minority-class detection. The optimized RF and XGBoost models were assessed using accuracy, precision, recall, and F1-score metrics, and achieved 100% accuracy with strong generalization. These results highlight the effectiveness of optimization-based feature selection and data balancing in improving IoT security that is extensible to deep learning and ensemble-based approaches.
A Mobile Ad hoc Network (MANET) is a collection of mobile nodes, that forms on the fly a temporary wireless multi-hop network in a self-organizing way, without relying on any established infrastructure. In MANET, a pair of nodes exchange messages either over a direct wireless link, or over a sequence of wireless links including one or more intermediate nodes. For this purpose, an efficient routing protocol is required. This paper introduced performance study of three of MANET protocols (AODV, GRP and OSPFv3). This study was one of the newer studies because wireless communication played an important role in today’s application and the field of mobile ad hoc network becomes very popular for the researchers in the last years. This study w
... Show MorePotential data interpretation is significant for subsurface structure characterization. The current study is an attempt to explore the magnetic low lying between Najaf and Diwaniyah Cities, In central Iraq. It aims to understand the subsurface structures that may result from this anomaly and submit a better subsurface structural image of the region. The study area is situated in the transition zone, known as the Abu Jir Fault Zone. This tectonic boundary is an inherited basement weak zone extending towards the NW-SE direction. Gravity and magnetic data processing and enhancement techniques; Total Horizontal Gradient, Tilt Angle, Fast Sigmoid Edge Detection, Improved Logistic, and Theta Map filters highlight source boundaries and the
... Show MoreImage compression is a suitable technique to reduce the storage space of an image, increase the area of storage in the device, and speed up the transmission process. In this paper, a new idea for image compression is proposed to improve the performance of the Absolute Moment Block Truncation Coding (AMBTC) method depending on Weber's law condition to distinguish uniform blocks (i.e., low and constant details blocks) from non-uniform blocks in original images. Then, all elements in the bitmap of each uniform block are represented by zero. After that, the lossless method, which is Run Length method, is used for compressing the bits more, which represent the bitmap of these uniform blocks. Via this simple idea, the result is improving
... Show MoreThis research proposes the application of the dragonfly and fruit fly algorithms to enhance estimates generated by the Fama-MacBeth model and compares their performance in this context for the first time. To specifically improve the dragonfly algorithm's effectiveness, three parameter tuning approaches are investigated: manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a novel technique called adaptive tuning by performance (APT). Additionally, the study evaluates the estimation performance using kernel weighted regression (KWR) and explores how the dragonfly and fruit fly algorithms can be employed to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, based on the Fama-French three-f
... Show MoreThe present work reports on the performance of three types of nanofiltration membranes in the removal of highly polluting and toxic lead (Pb2+) and cadmium (Cd2+) from single and binary salt aqueous solutions simulating real wastewaters. The effect of the operating variables (pH (5.5-6.5), types of NF membrane and initial ions concentration (10-250 ppm)) on the separation process and water flux was investigated. It was observed that the rejection efficiency increased with increasing pH of solution and decreasing the initial metal ions concentrations. While the flux decreased with increasing pH of solution and increasing initial metal ions concentrations. The maximum rejection of lead and cadmium ion
... Show Moreلقد كان حرص المؤلف على إصدار هذا الكتاب نابعا ً من قناعة تامة بأن مجال التقويم والقياس بحاجة إلى كتاب علمي حديث يتناول عرض أدوات الاختبار والقياس والمتمثلة بالصدق والثبات ويتسم بالوضوح في التعبير عن المفاهيم والمصطلحات والأنواع لكل منها ليكون وسيلة مبسطة بأيدي الأساتذة والباحثين وطلبتي الدراسات العليا الماجستير والدكتوراه لإستخراج صدق وثبات الاختبارات والمقاييس بطرق إحصائية متقدمة من خلال إستخدام البرنا
... Show MoreAbstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show MoreThis study was conducted to determine the Immuno – globulins and complements quantitatively. The result revealed that the concentration of Immunoglobulin M(IgM) was increased significantly in patient group comparing with control group . The concentration of complement protein C4 was increased significantly in patient group comparing with control group.IgG of Candida albicans was detected by using ELISA Technique, the result indicated also that this antibody was found in 628% of the women who infected with Vulvovaginal Candidiasis. The sensitivity and specificity of the test were 63% and 89% respectively.
This study appears GIS techniqueand remote sensing data are matching with the field observation to identify the structural features such as fault segments in the urban area such as the Merawa and Shaqlawa Cities. The use of different types of data such as fault systems, drainage patterns (previously mapped), lineament, and lithological contacts with spatial resolution of 30m was combined through a process of integration and index overlay modeling technique for producing the susceptibility map of fault segments in the study area. GIS spatial overlay technique was used to determine the spatial relationships of all the criteria (factors) and subcriteria (classes) within layers (maps) to classify and map the potential ar
... Show More