Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping : R R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.
In this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.
In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that A≤D and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M
... Show MoreSome authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.