In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreThe Internet image retrieval is an interesting task that needs efforts from image processing and relationship structure analysis. In this paper, has been proposed compressed method when you need to send more than a photo via the internet based on image retrieval. First, face detection is implemented based on local binary patterns. The background is notice based on matching global self-similarities and compared it with the rest of the image backgrounds. The propose algorithm are link the gap between the present image indexing technology, developed in the pixel domain, and the fact that an increasing number of images stored on the computer are previously compressed by JPEG at the source. The similar images are found and send a few images inst
... Show MoreThe Internet of Things (IoT) technology and smart systems are playing a major role in the advanced developments in the world that take place nowadays, especially in multiple privilege systems. There are many smart systems used in daily human life to serve them and facilitate their tasks, such as alarm systems that work to prevent unwanted events or face detection and recognition systems. The main idea of this work is to capture live video using a connected Pi camera, save it, and unlock the electric strike door in several ways; either automatically by displaying a live video connected via USB webcam using a deep learning algorithm of facial recognition and OpenCV or by RFID technology, as well as by detecting abnormal entrance wit
... Show MoreThe study area of Baghdad region and nearby areas lies within the central part of the Mesopotamia plain. It covers about 5700 Km2. The remote sensing techniques are used in order to produce possible Land Use – Land Cover (LULC) map for Baghdad region and nearby areas depending on Landsat TM satellite image 2007. The classification procedure which was developed by USGS used and followed with field checking in 2010. Land Use-land cover digital map is created depending on maximum likelihood classifications (ML) of TM image using ERDAS 9.2.The LULC raster image is converted to vector structure, using Arc GIS 9.3 Program in order to create a digital LULC map. This study showed it is possible to produce a digital map of LULC and it can be co
... Show MoreNecessary and sufficient conditions for the operator equation I AXAX n  ï€* , to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
In this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show MoreUrbanization phenomenon did expand rapidly in Baghdad-Iraq due to security improvement and the human desire for daily services availability, where reducing the agricultural lands "Greenlands" negatively affected the climate rate. The relationship between urban expansion and relative humidity was studied from 2008 to 2018 using remote sensing data (satellite images of Landsat 5 and Landsat 8) and relative humidity rate data obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF). Data were processed and analyzed using ArcGIS v: 10.2. Results showed changes in human activities (land use (LU)) and urban areas, where increasing urbanization declines vegetation and turbulence climate. The study provides a signi
... Show MoreMachine scheduling problems (MSP) are considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio
... Show More