Objective: This study evaluated the effect of immediate dentin sealing on the marginal adaptation of lithium disilicate overlays with three different types of resin-luting agents: preheated composite, dual-cure adhesive resin, and flowable composite. Materials and Methods: Forty-eight maxillary first premolars of similar size were prepared with a butt joint preparation design. The teeth were separated into two primary groups, each with twenty-four teeth: Group DDS: Delay dentin sealing (non-IDS) teeth were not treated. Group IDS: dentin sealing was applied immediately after teeth preparation. Each group was subsequently separated into three separate subgroups. Subgroups (DDS+Phc, IDS+Phc): cemented with preheated composite (Enamel plus HRi, Micerium, Italy), Subgroups (DDS+Dcrs, IDS+Dcrs): cemented with dual-cured resin cement (RelyX Ultimate, 3M ESPE, Germany) and Subgroups (DDS+Fc, IDS+Fc): Cemented with flowable composite (Filtek supreme flowable, 3M ESPE, USA). Using a digital microscope with a magnification of 230x, the marginal gap was measured before and after cementation at four different locations from each surface of the tooth, and the mean of measurements was calculated and analyzed statistically using the independent t-test, one-way ANOVA test, Bonferroni correction at a significance level of 0.05. Results: The samples that were immediately sealed with dentin bonding agent showed lower marginal gaps than delayed dentin sealing, both pre-and post-cementation for all subgroups, with a statistically significant difference (p < 0.01). The marginal gap was significantly lower in the IDS+Fc (48.888 ± 5.5 micro m) followed by the IDS+Dcrs group (53.612 ±5.8 micro m) and IDS+Phc (79.19 9±6.9 micro m) respectively, while the largest marginal gaps were observed in the DDS+Phc group (86.505 ± 5.4 micro m). Conclusion: Generally, the teeth with IDS showed better marginal adaptation than teeth without IDS. The marginal gap was smaller with flowable composite and dual-cure resin cement than with preheated composite.
Abstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a
... Show MoreThe reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show MoreThis Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Neg
... Show More