Preferred Language
Articles
/
NBdKPo8BVTCNdQwCcWVJ
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in combating overfitting in training deep neural networks.

Crossref
View Publication
Publication Date
Wed Dec 01 2021
Journal Name
International Journal Bioautomation
Model for Prediction of the Weight and Height Measurements of Patients with Disabilities for Diagnosis and Therapy
...Show More Authors

Background: Accurate measurement of a patient’s height and weight is an essential part of diagnosis and therapy, but there is some controversy as to how to calculate the height and weight of patients with disabilities. Objective: This study aims to use anthropometric measurements (arm span, length of leg, chest circumference, and waist circumference) to find a model (alternatives) that can allow the calculation of the height and the body weight of patients with disabilities. Additionally, a model for the prediction of weight and height measurements of patients with disabilities was established. Method: Four hander patients aged 20-80 years were enrolled in this study and divided into two groups, 210 (52.5%) male and 190 (47.5%) fe

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Aspac J. Mol. Biol. Biotechnol.
Utilizing waste mango and avocado seeds for highly effective dye removal with activated carbon
...Show More Authors

Activated carbon (AC) is a highly important adsorbent material, as it is a solid form of pure carbon that boasts a porous structure and a large surface area, making it effective for capturing pollutants. Thanks to its exceptional features, AC is widely used for purifying water that is contaminated with odors and removing dyes in a cost-effective manner. A variety of carbonic materials have been employed to prepare AC, and this study aimed to evaluate the suitability of utilizing waste mango and avocado seeds for this purpose, followed by testing their efficacy in removing dye from aqueous solutions. The results indicate that using waste mango and avocado as AC is technically feasible, achieving dye removal percentages of 98% and 93%,

... Show More
Scopus
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Molecular Liquids
Study to amino acid-based inhibitors as an effective anti-corrosion material
...Show More Authors

The inhibitory behavior of L-Cysteine (Cys) and its derivatives towards iron corrosion through density functional theory (DFT) was investigated. The current research study undertakes a rigorous evaluation of global as well as local reactivity descriptors of the Cys in protonated as well as neutral forms and the changes in reactivity after the combination of Cys into di- and tripeptides. The inhibitory effect of di- and tri-peptides increases since, in the molecular structure, the number of reaction centers increase. We computed the adsorption energies (Eads) and low energy complexes with most stability for the adsorption of small peptides and Cys amino acids onto the surfaces of Fe (1 1 1). We found that the adsorption of tri-peptides onto

... Show More
View Publication
Scopus (27)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MECHANICAL DEGRADATION OF HIGH MOLECULAR WEIGHT POLYMER WITH SURFACTANT ADDITION IN A ROTATING DISK APPARATUS
...Show More Authors

Mechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Pre-Processing and Surface Reconstruction of Points Cloud Based on Chord Angle Algorithm Technique
...Show More Authors

Abstract

Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Advances In Engineering Software
System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm
...Show More Authors

View Publication
Scopus (51)
Crossref (45)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.

  &nbsp

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Oct 19 2024
Journal Name
Iraqi Statisticians Journal
Forecasting Gold prices by hybrid ANFIS-based algorithm
...Show More Authors

In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca

... Show More
View Publication
Crossref