A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in combating overfitting in training deep neural networks.
The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreBackground: The elimination of the microorganisms from the root canal systems, an important step for the successful root canal treatment. This study was conducted to evaluate the antibacterial effectiveness of the photoactivated disinfection by using the toluidine blue O and a low- energy light emitting diode (LED) lamp . Materials and method: Sixty single rooted extracted teeth were decoronated, instrumented, irrigated, sealed at the apex and contaminated with endodontic anaerobic bacteria for 7 days to form biofilms in prepared root canals. Group I. Twelve teeth were medicated by photosensitizer (toluidine blue O) solution activated by diode lamp (FotoSan; CMS Dental, Copenhagen, Denmark).Group II. Twelve teeth were medicated by the tricr
... Show MoreThe study included selection six species of the fungi related to Pleurotus genus were evaluated for their ability to production of Pleurotin, one of them, Pleurotus ostreatus (P.11) was isolated and identified in the present study. Pleurotin was extracted with screening by Thin Layer Chromatography (TLC) and quantification High Performance Liquid Chromatography (HPLC). Cytotoxicity of Pleurotin extracted from P. ostreatus (P.11) grown in different sugar sources (galactose, mannitol, sucrose, dextrose and lactose) liquid media was test against three selected cancer cell lines, CaSki, MCF-7 and A549 addition to Human Non Cancer Fibroblast Cell Line (MRC-5). Pleurotin of P. ostreatus (P.11) grown in galactose induced the significant highest
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreThis study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
The objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response w
... Show MoreSilybum marianum, from which silymarin (SM) is extracted, is a medicinal herb. In the Biopharmaceutics Classification System, it is of the class II type, meaning it is almost completely insoluble in water. It has a number of therapeutic properties, including anti-inflammatory as well as properties that promote wound healing.
This research target is to promote the dissolution and solubility of SM by employing a technique called solid dispersion and then incorporating the formula of solid dispersion into a topical gel that can be used for wound healing.
Solid dispersion is a technique used to enhance solubility and dissolve pharmaceuticals that are not water-soluble. This method is widely used because of its low cos
... Show More