A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in combating overfitting in training deep neural networks.
In this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreHartha Formation is an overburdened horizon in the X-oilfield which generates a lot of Non-Productive Time (NPT) associated with drilling mud losses. This study has been conducted to investigate the loss events in this formation as well as to provide geological interpretations based on datasets from nine wells in this field of interest. The interpretation was based on different analyses including wireline logs, cuttings descriptions, image logs, and analog data. Seismic and coherency data were also used to formulate the geological interpretations and calibrate that with the loss events of the Hartha Fm.
The results revealed that the upper part of the Hartha Fm. was identified as an interval capable of creating potentia
... Show MoreA Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated vi
... Show MoreThis work has been done to prepare a series of new alkene compounds derived from 4-thiozolidinones by substituting different aldehydes, P-acetamido-phenol, and 2-mercapto-benzoimidazole, which were used as starting materials to form ester [I]a,b and then make hydrazides [II]a,b, which were used to prepare 1, 3, and 4-oxadiazoles [III]a,b, which were then used for prepared Schiff bases [IV]a-f, The next step was the synthesis of 4-thiazoldinone derivatives [V]a-f from Schiff bases. The final step was the synthesis of alkenes [VII]a-f, the prepared derivatives were identified with spectral methods (FT-IR, 1H-NMR, mass, and CHNS). The antibacterial activity of the prepared derivatives was evaluated against four types of bacteria, pos
... Show MoreThe settlement evaluation for the jet grouted columns (JGC) in soft soils is a problematic matter, because it is influenced by the number of aspects such as soil type, effect mixture between soil and grouting materials, nozzle energy, jet grouting, water flow rate, rotation and lifting speed. Most methods of design the jet-grouting column based on experience. In this study, a prototype single and group jet grouting models (single, 1*2, and 2*2) with the total length and diameter were (2000 and 150 mm) respectively and clear spacing (3D) has been constructed in soft clay and subjected to vertical axial loads. Furthermore, different theoretical methods have been used for the estimation