A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in combating overfitting in training deep neural networks.
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreWidespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show MoreAbstract
The study aims to examine the relationships between cognitive absorption and E-Learning readiness in the preparatory stage. The study sample consisted of (190) students who were chosen randomly. The Researcher has developed the cognitive absorption and E-Learning readiness scales. A correlational descriptive approach was adopted. The research revealed that there is a positive statistical relationship between cognitive absorption and eLearning readiness.
A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreMultilayer reservoirs are currently modeled as a single zone system by averaging the reservoir parameters associated with each reservoir zone. However, this type of modeling is rarely accurate because a single zone system does not account for the fact that each zone's pressure decreases independently. Pressure drop for each zone has an effect on the total output and would result in inter-flow and the premature depletion of one of the zones. Understanding reservoir performance requires a precise estimation of each layer's permeability and skin factor. The Multilayer Transient Analysis is a well-testing technique designed to determine formation properties in more than one layer, and its effectiveness over the past two decades has been
... Show MoreEstablishing coverage of the target sensing field and extending the network’s lifetime, together known as Coverage-lifetime is the key issue in wireless sensor networks (WSNs). Recent studies realize the important role of nature-inspired algorithms in handling coverage-lifetime problem with different optimization aspects. One of the main formulations is to define coverage-lifetime problem as a disjoint set covers problem. In this paper, we propose an evolutionary algorithm for solving coverage-lifetime problem as a disjoint set covers function. The main interest in this paper is to reflect both models of sensing: Boolean and probabilistic. Moreover, a heuristic operator is proposed as a local refinement operator to improve the quality
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-ho
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreBecause of the rapid development and use of the Internet as a communication media emerged to need a high level of security during data transmission and one of these ways is "Steganography". This paper reviews the Least Signification Bit steganography used for embedding text file with related image in gray-scale image. As well as we discuss the bit plane which is divided into eight different images when combination them we get the actual image. The findings of the research was the stego-image is indistinguishable to the naked eye from the original cover image when the value of bit less than four Thus we get to the goal is to cover up the existence of a connection or hidden data. The Peak to Signal Noise Ratio(PSNR) and Mean Square Error (
... Show More