The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compressive strength for blended cement with 10% replacement are (20, 11 and 5) % , (2 , 12 and, 13) % and (18, 15 and 16) % for limestone , quartzite and porcelinite respectively at (7,28 and 90)days for each compare to the reference mix, while blended cement with 20% replacement are (-3, -5 and -11) ,(6, -4% and -5) and (6, 4 and 6) % for limestone , quartzite and porcelinite respectively at (7, 28 and 90)days compare to the reference mix .The other mechanical properties (flexural tensile strength and splitting tensile strength) are the same phenomena of increase and decrease in compressive strength. The results indicated that the manufacture Portland-limestone cement, Portland-quartzite cement and Portland-porcelinite cement with 10% replacement of cement with improvable mechanical properties while the manufacture Portland-porcelinite cement with 20% replacement of cement with slight improvable mechanical properties and more economical cost.
To enlighten the extent of crude oil pollution effects on some anatomical characteristics of olive plant (Olea europaea ). Two years - old seedlings were chosen to grow under 5 levels of pollution (0.0, 0.5, 1.0, 2.0, and 3.0, liter/ plant). The experiment has been conducted in the experimental field of Natural History Research Center and Museum, University of Baghdad. It was designed as CRD experiment. Testing wood specimens were prepared after 2.5 years of growth. Fiber length, width, wall thickness, and wood specific gravity were measured. Results showed that olive plants could not resist the highest level ( 3 liters / plant ) of pollution .Fiber length was the most affected property by treatment. All fiber dimensions wer
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
The refractive indices, nD densities 𝜌, and viscosities of binary mixtures of sulfolane + n -butanol + sec- butanol + iso- butanol + tert – butanol + n-propanol and iso- propanol were measured at 298.15K. Form experimental data, excess molar volum VE , excess molar refractivity ∆nD, excess molar viscosity E and excess molar Gibbs free energy of activation of viscous flow G *E were calculated. From n-propanol – sulfolane and iso- propanol sulfolane mixtures showed negative ∆nD, n-butanol – sulfolane, sec-butanal – sulfolane, iso-butanol – sulfolane and tert- butanol sulfolane , nD was positive over the whole mole fraction rang , while VE , E and G *E show a negative deviation. The
... Show MoreThin films were prepared from poly Berrol way Ketrrukemaaih pole of platinum concentrations both Albaarol and salt in the electrolytic Alastontrel using positive effort of 7 volts on the pole and the electrical wiring of the membrane record
Thin films of pure yttrium oxide (Y2O3) and doped with cerium oxide (CeO2) were prepared by the chemical spray pyrolysis(CSP)method. The structural, optical and electrical properties of the prepared films were investigated. The analysis of X-ray diffraction (XRD) thin films revealed that the undoped and doped Y2O3 were amorphous with a broad hump around 27o and narrow humps around 48o and 62o for all samples. Except for the Y2O3:6wt.%CeO2 thin film, all had signal preferential orientation along the (100) plane at 2θ=12.71o which belongs to CeO2, Field emission scanning electron mic
... Show MoreIntroduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morph
... Show MoreObjective: To evaluate and compare the effect of mechanical surface treatment (groove, aluminum oxide particles)
with 45 degree bevel type of joint on tensile bond strength of acrylic specimens repaired by two curing methods
(microwave and water both).
Methodology: Eighty specimens (80) were prepared from pink heat cure acrylic resin. They were divided into two
main groups (40 specimen repaired by microwave energy and 40 specimens repaired by water bath method).Each
group can be divided into four subgroups of ten according to the surface treatment. The control group A was left
intact, group B received no surface treatment, group C and D received surface treatment by (groove, 50 m aluminum
oxide particles). Specimens
Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreRecently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 3
... Show More