Urinary tract infection is a bacterial infection that often affects the bladder and thus the urinary system. E. coli is one of the leading uropathogenic bacteria that cause urinary tract infections. Uropathogenic E. coli is highly effective and successful in causing urinary tract infections through biofilm formation and urothelial cell invasion mechanisms. Other organisms that cause urinary tract infections include members of the Enterobacteriaceae family, streptococci and staphylococci species and perch. In addition, K.penumoniae is another important gram-negative bacterium that causes urinary tract infections. With the PCR technique, unseen bacterial species can be detected using standard clinical microbiology methods. In this study, the antibiotic resistance of E. coli and K. penumoniae bacteria causing urinary tract infection was analyzed by PCR technique. As a result of the experiments conducted within the scope of our study, it was found that bla SHV, one of the virulence factors of E. coli isolates, and bla CTX-M, one of the genes that produce ESBL, were related that both these virulence factors can be found at the same time in ESBL positive and negative isolates. It appeared that bla CTX-M gene is not detected in any of the ESBL negative isolates. It demonstrated that the bla CTX-M gene was more dominant in the development of resistance to β-lactam group antibiotics. Also, the results of the experiments conducted within the scope of our study, the frequency percentage of β-lactamase resistance genes (bla TEM, bla SHV and bla CTX-M) increased in K. pneumoniae compared to E. coli isolates. Moreover, phenotypic and genotypic methods are needed to detect the presence of different gene products associated with resistance in E. coli and K. pneumoniae isolates.
The effect of three ionic liquids viz., 1-hexyl-3-methylimidazolium tetrafluoroborate (ILE), 1-hexyl-3-metylimidazolium hexafluorophosphate (ILF) and 1-octyl-3-methylimidazolium tetrafluoroborate (ILG) when used as surfactants on the performance of dissolved air floatation (DAF) was investigated.
Experiments were conducted at a temperature of 30-35 ºC, 10ppm ferric chloride as coagulant, 50% recycle ratio, pH 8, and 10 minutes treatment time to find oil and grease (OG) and turbidity removal efficiencies at saturation pressure (2-6) bar.
ILs were used at concentration of 50 µl/liter of treated water in two positions in DAF system; the saturation vessel and the treatment tank. The performance using ILs
... Show MoreA partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and studied. The basic reproduction number is determined. The local and global stability of all equilibria of the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify the control set of parameters that affect the dynamics of the model.
The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show MoreWe demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.
The mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.
Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show MoreBiomass is a popular renewable carbon source because it has a lot of potential as a substitute for scarce fossil fuels and has been used to make essential compounds like 5-hydroxymethylfurfural (HMF). One of the main components of biomass, glucose, has been extensively studied as a precursor for the production of HMF. Several efforts have been made to find efficient and repeatable procedures for the synthesis of HMF, a chemical platform used in the manufacturing of fuels and other high-value compounds. Sulfonated graphite (SG) was produced from spent dry batteries and utilized as a catalyst to convert glucose to 5-hydroxymethylfurfural (HMF). Temperature, reaction time, and catalyst loading were the variables studied. When dimethyl sulfo
... Show More