This study was conducted to evaluate the hydrocarbon biodegradation abilities of Enterobacter cloacae, Staphylococcus aureus, Sphingomonas paucimobilis, and Pentoae species which were isolated from different diesel-contaminated soil samples. The isolates were identified by the Vitek 2 system. Fourier-transform spectroscopy (FT-IR) tested the potential of these isolates to biodegrade the diesel according to the peak areas, a significant decrease in the area of the peaks at 2856-2928 cm−1 corresponds to aliphatic hydrocarbons. The appearance of small peaks at 900-1032 cm−1 refers to substituted benzene derivative compounds. An appearance of some new peaks at 3010- 3030 cm−1 which indicate the presence of alcohol (-OH) and ketones (RC=O). A sharp peak appeared at 1712 cm−1 refers to the carbonyl group (C=O). The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates were biological surfactant producers. The better results of the surface tension reduction test were obtained when using the mixed bacterial culture which reduced the surface tension of the medium from 66 mN/m to 35.15 mN/m. Single isolates and mixed bacterial culture have investigated their ability to degrade 3.0 % (v/v) of diesel as sole source of carbon and energy in Bushnell- Haas medium. The results demonstrated that the bacterial isolates could be effective in biodegradation of diesel spills individually and showed good biodegradation abilities when they are used together in the mixed bacterial culture.
The current work reports a new Schiff base [N1-benzylidenebenezene-1,2-diamine(L) = C20H16N2] has been synthesized from benzaldehyde (C6H5CHO) and O- aminoaniline (O-C6H4(NH2)2. Metal mixed ligand complexes of the Schiff base were prepared from chloride salts of Zn(II), Cd(II) and Hg(II) in ethanol and 8-hydroxyquinoline(8HQ)(C9H7NO) containing sodium hydroxide. All the complexes were characterized on the basis of their; FT-IR and U.V spectra, melting point, molar conductance, and determination of the percentage of the metal in the complexes by flame (AAS). In the all complexes, (8HQ) behaves as a bidentate ligand as primary ligand through –-OH phenolic group and –N groups of pyridine group. Also, the prepared ligand (L) was bidentate i
... Show MoreComplexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4- aminoantipyrine (4-AAP) and tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3). The prepared complexes were characterized using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the two ligands and their complexes against three selected type of bacteria were also examined. The general compositions of the complexes are found to be [M(4-AAP)2(PBu3)2] Cl2 . Where M= Co(II),Ni(II),Cu(II)and Zn(II). Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structures have suggested for all prepare
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreMixed ligand metal complexes are synthesized from oxalic acid with Schiff base, and the Schiff base was obtained from trimethoprim and acetylacetone. The synthesized complexes were of the type [M(L1)(L2)], where the metal, M, is Ni(II), Cu(II), Cr(III), and Zn(II), L1 corresponds to the trimethoprim ((Z)-4-((4-amino-5-(3,4,5- trimethoxybenzyl)pyrimidine-2-yl)imino)pentane-2-one) as the first ligand and L2 represent the oxalate anion (𝐶𝑂 ) as a second ligand. Characterization of the prepared compounds was performed by elemental analysis, molar conductivity, magnetic measurements, 1H-NMR, 13C-NMR, FT-IR, and Ultraviolet-visible (UV-Vis) spectral studies. The recorded infrared data is reinforced with density functional th
... Show MoreThe synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreMixed ligand metal complexes are synthesized from oxalic acid with Schiff base, and the Schiff base was obtained from trimethoprim and acetylacetone. The synthesized complexes were of the type [M(L1)(L2)], where the metal, M, is Ni(II), Cu(II), Cr(III), and Zn(II), L1 corresponds to the trimethoprim ((Z)-4-((4-amino-5-(3,4,5-trimethoxybenzyl)pyrimidine-2-yl)imino)pentane-2-one) as the first ligand and L2 represent the oxalate anion ( ) as a second ligand. Characterization of the prepared compounds was performed by elemental analysis, molar conductivity, magnetic measurements, 1H-NMR, 13C-NMR, FT-IR, and Ultraviolet-visible (UV-Vis) spectral studies. The recorded infrared data is reinforced with density functional theory (DFT) calcul
... Show Morehe present work, among other previous studies done in our lab, aimed to highlight the histopathological effect of S. xylosus peptidoglycan in comparison to LPS of E. coli. Materials and methods: One hundred and fifty urine specimens were collected from urinary tract infection patients visiting Baghdad hospitals. The histopathological effects of S. xylosus S24 peptidoglycan was studied in the urinary tract of female mice by injecting 5 animal groups at the following concentrations: 1000, 2000, 3000, 4000, and 5000 µg/mL. Another 5 groups were injected with 10, 25, 50, 75, and 100 ng/mL of E. coli (serotype 0128:B12) LPS. Results: Ten isolates were confirmed to be Staphylococcus xylosus. Histopathological study showed different pathological
... Show More