In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated through the strain profiles, stress distribution, normal force-axial strain, and moment-curvature relationships, shows that the numerical model has good numerical accuracy and is capable of predicting the behavior of structural concrete members with different partially prestressing ratios at serviceability and ultimate loading stages.
Multi-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization o
... Show MoreAbstract
The current research aims to examine the effectiveness of a training program for children with autism and their mothers based on the Picture Exchange Communication System to confront some basic disorders in a sample of children with autism. The study sample was (16) children with autism and their mothers in the different centers in Taif city and Tabuk city. The researcher used the quasi-experimental approach, in which two groups were employed: an experimental group and a control group. Children aged ranged from (6-9) years old. In addition, it was used the following tools: a list of estimation of basic disorders for a child with autism between (6-9) years, and a training program for children with autism
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreWireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MorePC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water f
Channel estimation and synchronization are considered the most challenging issues in Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is highly affected by synchronization errors that cause reduction in subcarriers orthogonality, leading to significant performance degradation. The synchronization errors cause two issues: Symbol Time Offset (STO), which produces inter symbol interference (ISI) and Carrier Frequency Offset (CFO), which results in inter carrier interference (ICI). The aim of the research is to simulate Comb type pilot based channel estimation for OFDM system showing the effect of pilot numbers on the channel estimation performance and propose a modified estimation method for STO with less numb
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show More