The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
Epithelial ovarian cancer is the leading cause of cancer deaths from gynecological malignancies. Angiogenesis is considered essential for tumor growth and the development of metastases. VEGF and IL?8 are potent angiostimulatory molecules and their expression has been demonstrated in many solid tumors, including ovarian cancer.VEGF and IL-8 concentrations were measured by ELISA test (HumanVEGF,IL-8). Bioassay ELISA/ US Biological / USA).The median VEGF and IL-8 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors and in healthy controls.Pretreatment VEGF and IL-8 serum levels might be regarded as an additional tool in the differentiation of ovarian tumors.
Photonic crystal fiber interferometers (PCFIs) are widely used for sensing applications. This work presented solid core-PCFs based on Mach-Zehnder modal interferometer for sensing refractive index. The general structure of sensor was applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28).To apply modal interferometer theory collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). A high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted wavelength. This work studied a Mach-Zahnder interferometer refractive index sensor based on splicing point tapered SMF-PCF-SMF. Relation between refractive index sensitivity and tape
... Show MoreIn this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10
... Show MoreA novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. As more and more information is transacted over wireless media, there has been increasing criminal activity directed against such systems. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. We have studied the performance of differential chaos shift keying (DCSK) with 2×2 Alamouti scheme and 2×1 Alamouti scheme for different chaotic maps over additive white Gaussian noise (
... Show MoreThe research aims to recognize the impact of the training program based on integrating future thinking skills and classroom interaction patterns for mathematics teachers and providing their students with creative solution skills. To achieve the goal of the research, the following hypothesis was formulated: There is no statistically significant difference at the level (0.05) between the mean scores of students of mathematics teachers whose teachers trained according to the proposed training program (the experimental group) and whose teachers were not trained according to the proposed training program (the control group) in Pre-post creative solution skills test. Research sample is consisted of (31) teachers and schools were distribut
... Show MoreBackground: Obesity tends to appear in modern societies and constitutes a significant public health problem with an increased risk of cardiovascular diseases.
Objective: This study aims to determine the agreement between actual and perceived body image in the general population.
Methods: A descriptive cross-sectional study design was conducted with a sample size of 300. The data were collected from eight major populated areas of Northern district of Karachi Sindh with a period of six months (10th January 2020 to 21st June 2020). The Figure rating questionnaire scale (FRS) was applied to collect the demographic data and perception about body weight. Body mass index (BMI) used for ass
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreThis study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show More