Bimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –Pt catalysts supporting TiO2 have been found (0.05g of the catalyst prepared in sol immobilization method, 0.07 g of the synthesised in impregnation procedure. The impact of pH on the degradation reaction was tested; it has been found that pH 10 is the best media for the reaction. The effect of temperature has been discussed when various temperatures were used, and the heat of photoreaction Ea was estimated from the Arrhenius relationship, it has been concluded that the reaction is independent of temperature as the activation energy was very small (Ea= 22 kJ/ mole). The thermodynamic functions; entropy, enthalpy and the free energy have been figured out. It has been found that the positive values of enthalpy ∆H# refer to endothermic reaction, moreover, it has been demonstrated that the photoreaction is an endergonic one according to the calculated values of the free energy of activation. It has been noticed that when temperature increases, it promotes the production of free radicals, but it has been noticed that exceeding the temperature more than the used range causes reducing the percentage of degradation of crystal violet, the reason is due to the limitation conditions of adsorption process at higher temperature on the surface of the catalyst.
The purpose of this research work is to synthesize conjugates of some NSAIDs with sulfamethoxazole as possible mutual prodrugs to overcome the local gastric irritation of NSAID with free carboxyl group by formation of ester linkage that supposed to remain intact in stomach and may hydrolyze in intestine chemically or enzymatically; in addition to that attempting to target the synthesized derivative to the colon by formation of azo group that undergo reduction only by colonic bacterial azo reductaze enzyme to liberate the parent compound to act locally (treatment of inflammation and infections in colon).
Key words: Mutual prodrug, Ester linkage, Azo bond, Colon targeting
The purpose of this research work is to synthesize conjugates of some NSAIDs with sulfamethoxazole as possible mutual prodrugs to overcome the local gastric irritation of NSAID with free carboxyl group by formation of ester linkage that supposed to remain intact in stomach and may hydrolyze in intestine chemically or enzymatically; in addition to that attempting to target the synthesized derivative to the colon by formation of azo group that undergo reduction only by colonic bacterial azo reductaze enzyme to liberate the parent compound to act locally (treatment of inflammation and infections in colon)
Samples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct
The work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.
Preparation of epoxy/ TiO2 and epoxy/ Al2O3 nanocomposites is studed and investigated in this paper. The nano composites are processed by different nano fillers concentrations (0, 0.01, 0.02 ,0.03, 0.04 ,0.05 ,0.07 and 0.1 wt%). The particles sized of TiO2,Al2O3 are about 20–50 nm.Epoxy resin and nano composites containing different shape nano fillers of (TiO2:Al2O3 composites),are shear mixing with ratio 1 to 1,with different nano hybrid fillers concentrations( 0.025 ,0.0 5 ,0.15 ,0.2, and 0.25 wt%) to Preparation of epoxy/ TiO2- Al2O3 hybrid composites. The mechanical properties of nanocomposites such as bending ,wearing, and fatigue are investigated as mechanical properties.
Spent catalysts for sulfuric acid production have large amount of vanadium and due to environmental authority it is required to reduce the vanadium contain of the spent catalyst. Experimental investigation was conducted to study the vanadium recovery from spent catalyst via leaching process using sodium hydroxide to study the effect of process variables (temperatures, sodium hydroxide molarities, leaching time and particle size) on vanadium recovery. The effect of process variables (temperature, particle size,molarities of sodium hydroxide and leaching time) on the percentages of vanadium recovery were investigated and discussed .It was found that the percentage of vanadium recovery increased with increasing temperature up to 100 , incre
... Show MoreAn investigation was conducted for the determination of the effects of the forming conditions in the production of Gamma Alumina catalyst support on the crushing strength property. Eight variables were studied , they are ;binder content which is the sodium silicate , Solvent content which is the water, speed of mixing , time of mixing, drying temperature , drying time , calcinations temperature and the calcinations time
Design of the experiments was made by using the response Surface method in Minitab 15 software which supply us 90 experiments .
The results of this investigation show that the crushing strength for the dried Gamma alumina extrudate was affected by the drying temperature and the drying time only and there is no inter
Abstract: This research was performed to study the effect of some amino acids and vitamins on the growth of bacteria Staphylococcus aureas and its sensitivity against UV light. The results showed low inhibition in bacterial growth because amino acids repairs the damges caused by UV light. Besides the effect of two groups of antibiotics (β-lactame and tetracycline) on the growth of S. aureus and the possible interference of amino acids and vitamins in the activity of the antibiotics against this bacteria in the presence of UV light were studied. The result show increase in the sensitivity towards these antibiotics and provided protection against the antibiotics.