Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
The current research aims to recognize the exploratory and confirmatory factorial structure of the test-wiseness scale on a sample of Hama University students, using the descriptive method. Thus, the sample consists of (472) male and female students from the faculties of the University of Hama. Besides, Abu Hashem’s 50 item test-wiseness scale (2008) has been used. The validity and reliability of the items of the scale have also been verified, and six items have been deleted accordingly. The results of the exploratory factor analysis of the first degree have shown the presence of the following five acceptable factors: (exam preparation, test time management, question paper handling, answer sheet handling, and revision). Moreover,
... Show MoreIn this work Study effect of annealing temperature on the Structure
of a-Se and electrical properties of a-Se/c-Si hetrojunction have been
studied.The hetrojunction fabricated by deposition of a-Se film on c-
Si using thermal evaporation.
Electrical properties of a-Se/ c-Si heterojunction include I-V
characteristics, in dark at different annealing temperature and C-V
characteristics are considered in the present work.
C-V characteristics suggested that the fabricated diode was
abrupt type, built in potential determined by extrapolation from
1/C2-V curve. The built - in potential (Vbi) for the Se/ Si System
was found to be increase from 1.21 to 1.62eV with increasing of
annealing temperature
The erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreYouTube is not just a platform that individuals share, upload, comment on videos; teachers and educators can utilize it to the best maximum so that students can have benefits. This study aims at investigating how active and influential YouTube can be in the educational process and how it is beneficial for language teachers to enhance the skills of students. The study demonstrates different theoretical frameworks that tackle the employment of technology to enhance the learning/teaching process. It relies on the strategies of Berk (2009) for using multimedia media, video clips in particular to develop the abilities of teachers for using technology in classrooms. To achieve the objective of the study, the researchers develop a questionnair
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIt is often needed in demographic research to modern statistical tools are flexible and convenient to keep up with the type of data available in Iraq in terms of the passage of the country far from periods of war and economic sanctions and instability of the security for a period of time . So, This research aims to propose the use of style nonparametric splines as a substitute for some of the compounds of analysis within the model Lee-Carter your appreciation rate for fertility detailed variable response in Iraq than the period (1977 - 2011) , and then predict for the period (2012-2031). This goal was achieved using a style nonparametric decomposition of singular value vehicles using the main deltoid , and then estimate the effect of time-s
... Show More