Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
The current research aims to identify the types and rates and the reasons for the crimes that are with the origin and sexual scattered deviation between the fabric of Iraqi society, which reticent about because of the culture of the community, where he offered a researcher investigator justice and tribal leaders and lawyers about proportion and the types and causes of crime is the origin of sexual deviance and finally a question asked a researcher in 1000 young lived their adolescence days of the former regime (1979-2003) from going to brothels researcher found that 920 people and 92% had gone to the house to practice adultery and that 70 of them, and by 7% had engaged in masturbation only and that 10 of them have not committed anything
... Show MoreCosmetic products contain variable amounts of nutrients that support microbial growth. Most contaminants in cosmetic products include bacteria such as Staphylococcus, Pseudomonas, Klebsiella, Achromobacter and Alcaligenes. Contaminated water is a likely source of organisms found in cosmetic products. Products such as shampoo, hand and body lotion, facial cleanser, and liquid soaps were analyzed. In this study, out of 60 cosmetic products analyzed, 26.4% were found to be contaminated. Most of the contamination was from bacteria and no fungal contamination was detected. The highest level o
... Show MoreParties as active units in this process in order to work must have access to sources of funding in order to maintain their political presence in society and participate in the process of electoral competition, To win the election, bolstering the huge role that money has played in influencing the principle of equality among contestants in the elections. Those who own money will have a greater chance of winning the elections while less competitive opportunities for others who do not own the money or what they own does not give them the competitive ability to win elections. From this point of view, controlling political finance through legal regulation and institutional, media and popular monitoring has become an important requirement
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreIn recent years, English language teaching and second language acquisition has demonstrated a significant accentuation upon basic reasoning abilities improvement in the language capability advancement. Encouraging a point of view of duty to training basic intuition aptitudes in accordance with the English language courses, this paper gives an account of an investigation directed at theoretical meanings of basic deduction, drifts about the centrality of basic speculation for language educating and associations between critical thinking and language learning. The educators have the focal pretended by basic intuition in successful language teaching method, identified to Ennis’ (2011) critical thinking categories. The skill of thinking critic
... Show MoreAbstract
The study aims to build a training program based on the Connectivism Theory to develop e-learning competencies for Islamic education teachers in the Governorate of Dhofar, as well as to identify its effectiveness. The study sample consisted of (30) Islamic education teachers to implement the training program, they were randomly selected. The study used the descriptive approach to determine the electronic competencies and build the training program, and the quasi-experimental approach to determine the effectiveness of the program. The study tools were the cognitive achievement test and the observation card, which were applied before and after. The study found that the effectiveness of the training program
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreThe issue of liquidity, profitability, and money employment, and capital fullness is one of the most important issues that gained high consideration by other authors and researchers in their attempts to find out the real relationship and how can balance be achieved, which is the main goal of each deposits.
For the sake of comprising the study variables, the research has formed the problem of the study which refers to the bank capability to enlarge profits without dissipation in liquidity of the bank which will negatively reflect on the bank's fame as well as the customers' trust. For all these matters, the researcher has proposed a set of aims, the important of which is the estimation of the bank profitability; liquid
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreThe outbreak of a current public health coronavirus 2019 disease is a causative agent of a serious acute respiratory syndrome and even death. COVID-19 has exposed to multi-suggested pharmaceutical agents to control this global disease. Baricitinib, a well-known antirheumatic agent, was one of them. This article reviews the likely pros and cons of baricitinib in attenuation of COVID-19 based on the mechanism of drug action as well as its pharmacokinetics. The inhibitory effect of baricitinib on receptor mediated endocytosis promoter, AKK1, and on JAK-STAT signaling pathway is benefacial in inhibition of both viral assembling and inflammation. Also, its pharmacokinetic has encouraged the physicians toward the drug
... Show More